Том 6, №1, 2014


Sheka E. F.
Российский университет дружбы народов, http://www.rudn.ru
117198 Москва, Российская Федерация

Поступила 31. 03.2013
Представлена действительным членом РАЕН Губиным С.П. 10.04.2013.

Odd electrons of benzenoid units and the correlation of these electrons having different spins are the main concepts of the molecular theory of graphene. In contrast to the theory of aromaticity, the molecular theory is based on the fact that odd electrons with different spins occupy different places in the space so that the configuration interaction becomes the central point of the theory. Consequently, a multi-determinant presentation of the wave function of the system of weakly interacting odd electrons is utterly mandatory on the way of the theory realization at the computational level. However, the efficacy of the available CI computational techniques is quite restricted in regard to large polyatomic systems, which does not allow performing extensive computational experiments. Facing the problem, computationists have addressed standard single-determinant ones albeit not often being aware of the correctness of the obtained results. The current chapter presents the molecular theory of graphene in terms of single-determinant computational schemes and discloses how reliable information about the electron-correlated system can be obtained by using either UHF or UDFT computational schemes.

Keywords: molecular theory of graphene; odd electrons; electron correlation; effectively unpaired electrons; magnetic coupling constant; graphene; magnetism; chemical modification; deformation

PACS: 31.10.+Z, 31.15.CT, 31.15.VQ, 68.65.PQ

Библиография – 93 ссылки

RENSIT, 2013, 5(1):126-142

  • Hoffmann R. (2013) Small but strong lessons from chemistry for nanoscience. Ang Chem Int Ed 52:93-103.
  • Hoffmann R. (1971) Interaction of orbitals through space and through bonds. Acc Chem Res 4:1–9.
  • Hay PJ, Thibeault JC, Hoffmann R. (1971) Orbital interactions in metal dimer complexes. J Amer Chem Soc 97:4884-4899.
  • Sheka E. (2003) Violation of covalent bonding in fullerenes. In: Sloot P M A, Abramson D, Bogdanov AV et al (eds) Lecture Notes in Computer Science, Computational Science – ICCS2003, Springer, Heidelberg, p 386-398.
  • Sheka EF. (2011) Fullerenes: Nanochemistry, nanomagnetism, nanomedicine, nanophotonics. CRC Press, Taylor and Francis Group, Boca Raton.
  • Sheka EF. (2003) Fullerenes as polyradicals. Internet Electronic Conference of Molecular Design, 2003, 23 November – 6 December 2003. http://www.biochempress.com, November 28, paper 54.
  • Sheka EF. (2004) Odd electrons and covalent bonding in fullerenes. Int J Quant Chem 100:375-386.
  • Sheka E. (2009) Nanocarbons through computations: Fullerenes, nanotubes, and graphene. In: The UNESCO-EOLSS Encyclopedia Nanoscience and Nanotechnology. UNESCO, Moscow, p. 415-444.
  • Geim AK, Novoselov KS. (2007) The rise of graphene. Nature Mat 6:183-191.
  • Davidson E. (1998) How robust is present-day DFT? Int J Quant Chem 69:214-245.
  • Kaplan I. (2007) Problems in DFT with the total spin and degenerate states. Int J Quant Chem 107:2595-603.
  • Takatsuka K, Fueno T, Yamaguchi K. (1978) Distribution of odd electrons in ground-state molecules. Theor Chim Acta 48:175-183.
  • Staroverov VN, Davidson ER. (2000) Distribution of effectively unpaired electrons. Chem Phys Lett 330:161-168.
  • Benard MJ. (1979) A study of Hartree–Fock instabilities in Cr2(O2CH)4 and Mo2(O2CH)4. J Chem Phys 71:2546-56.
  • Lain L, Torre A, Alcoba DR et al. (2011) A study of the relationships between unpaired electron density, spin-density and cumulant matrices. Theor Chem Acc 128:405-410.
  • Sheka EF, Chernozatonskii LA. (2007) Bond length effect on odd electrons behavior in single-walled carbon nanotubes. J Phys Chem A 111:10771-10780.
  • Sheka EF. (2012) Computational strategy for graphene: Insight from odd electrons correlation. Int J Quant Chem 112:3076-3090.
  • Zayets VA. (1990) CLUSTER-Z1: Quantum-chemical software for calculations in the s,p-basis. Institute of Surface Chemistry Nat Ac Sci of Ukraine: Kiev.
  • Gao X, Zhou Z, Zhao Y et al. (2008) Comparative study of carbon and BN nanographenes: Ground electronic states and energy gap engineering. J Phys Chem A 112:12677-82.
  • Noodleman L. (1981) Valence bond description of antiferromagnetic coupling in transition metal dimers. J Chem Phys 74: 737-42.
  • Illas F, Moreira I de PR, de Graaf C, Barone V. (2000) Magnetic coupling in biradicals, binuclear complexes and wide-gap insolators; a survey of ab initio function and density functional theory approaches. Theor Chem Acc 104:265-272.
  • Zvezdin AK, Matveev VM, Mukhin AA et al. (1985) Redkozemeljnyje iony v magnito-uporjadochennykh kristallakh (Rear Earth ions in magnetically ordered crystals) Nauka, Moskva.
  • Van Fleck JH. (1932) The theory of electric and magnetic susceptibilities. Oxford at the Clarendon Press, Oxford.
  • Kahn O. (1993) Molecular Magnetism. VCH, New York.
  • Koshino M, Ando T. (2007) Diamagnetism in disordered graphene. Phys Rev B 75:235333 (8 pages).
  • Nair RR, Sepioni M, Tsai I-L et al. (2012) Spin-half paramagnetism in graphene induced by point defects. Nature Phys 8:199-202.
  • Sheka EF, Chernozatonskii LA. (2010) Chemical reactivity and magnetism of graphene. Int J Quant Chem 110:1938-1946.
  • Sheka EF, Chernozatonskii LA. (2010) Broken spin symmetry approach to chemical susceptibility and magnetism of graphenium species. J Exp Theor Phys 110:121-132.
  • Shibayama Y, Sato H, Enoki T, Endo M. Phys. Rev. Lett. 2000, 84:1744.
  • Enoki T, Kobayashi Y. J. Mat. Chem. 2005, 15:3999.
  • Tada K, Haruyama J, Yang HX et al. (2011) Graphene magnet realized by hydrogenated graphene nanopore arrays. Appl Phys Lett 99:183111(3 pages).
  • Tada K, Haruyama J, Yang HX et al. (2011) Ferromagnetism in hydrogenated graphene nanopore arrays. Phys Rev Lett 107:217203 (5 pages).
  • Sheka EF, Zayets VA, Ginzburg IYa. (2006) Nanostructural magnetism of polymeric fullerene crystals. J Exp Theor Phys 103:728-739.
  • Boeker GF. (1933) The diamagnetism of carbon tetrachloride, benzene and toluene at different temperatures. Phys Rev 43:756-760.
  • Seach MP, Dench WA. (1979) Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf Interf Anal 1:2-11.
  • Komolov SA, Lazneva EF, Komolov AS. (2003) Low-energy electron mean free path in thin films of copper phthalocyanine. Tech Phys Lett 29:974-976.
  • Takatsuka K, Fueno TJ. (1978) The spin-optimized SCF general spin orbitals. II. The 2 2S and 2 2P states of the lithium atom. J Chem Phys 69:661-669.
  • Staroverov VN, Davidson ER. (2000) Biradical character of the Cope rearrangement transition state. J Am Chem Soc 122:186-187.
  • Mayer I. (1986) On bond orders and valences in the ab initio quantum chemical theory. Int J Quant Chem 29:73-84.
  • Dewar MJS, Thiel W. (1977) Ground states of molecules. 38. The MNDO method. Approximations and parameters. J Am Chem Soc 99:4899-4907.
  • Zhogolev DA, Volkov VB. (1976) Metody, algoritmy i programmy dlja kvantovo-khimicheskikh raschetov molekul (Methods, algorithms and programs for quantum-chemical Calculations of molecules) Kiev, Naukova Dumka.
  • Sheka EF, Zayets VA. (2005) The radical nature of fullerene and its chemical activity. Russ J Phys Chem 79:2009-2014.
  • Lain L, Torre A, Alcoba DR et al. (2009) A decomposition of the number of effectively unpaired electrons and its physical meaning. Chem Phys Lett 476:101-103.
  • Wang J, Becke AD, Smith VHJr. (1995) Eveluation of in restricted, unrestricted Hartree-Fock, and density functional based theory. J Chem Phys 102:3477-3480.
  • Cohen AJ, Tozer DJ, Handy NC. (2007) Evaluation of in density functional theory. J Chem Phys 126:214104 (4 pp).
  • Lobayan RM, Bochicchio RC, Torre A et al. (2011) Electronic structure and effectively unpaired electron density topology in closo-boranes: Nonclassical three-center two-electron bonding. J Chem. Theory Comp 7:979-987.
  • Kitagawa Y, Saito T, Ito M et al. (2007) Approximately spin-projected geometry optimization method and its application to di-chromium systems. Chem Phys Lett 442:445-450.
  • Kitagawa Y, Saito T, Nakanishi Y et al. (2009) Spin Contamination Error in Optimized Geometry of Singlet Carbene (1A1) by Broken-Symmetry Method. J Phys Chem A 113:15041-15046.
  • Gross L, Mohn F, Moll N et al. (2009) The chemical structure of a molecule resolved by atomic force microscopy. Science 325:1110-1114.
  • ‘Olympic rings’ molecule olympicene in striking image BBC News Science and Environment (2012-05-28).
  • Fujita M, Wakabayashi K, Nakada K et al. (1996) Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 65:1920-1923.
  • Nakada K, Fujita M, Dresselhaus G et al. (1996) Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys Rev B 54:17954-17961.
  • Coleman J. (2008) A new solution to graphene production. SPIE Newsroom. DOI: 10.1117/2.1200810.1336.
  • The noise about graphene (2010) Science Centre of Barkley Lab.
  • Sheka EF. (2006) ‘Chemical portrait’ of fullerene molecule. J Str Chem 47:600-607.
  • Sheka EF. (2007) Chemical susceptibility of fullerenes in view of Hartree-Fock approach. Int Journ Quant Chem 107:2803-2816.
  • Sheka EF, Chernozatonskii LA. (2010) Chemical reactivity and magnetism of graphene. Int J Quant Chem 110:1938-1946.
  • Sheka EF, Chernozatonskii LA. (2010) Broken spin symmetry approach to chemical susceptibility and magnetism of graphenium species. J Expt Theor Phys 110:121-132.
  • Allouche A, Jelea A, Marinelli F et al. (2006) Hydrogenation and dehydrogenation of graphite (0001) surface: a density functional theory study. Phys. Scr. T124:91-94.
  • Sheka EF. (2010) Stepwise computational synthesis of fullerene C60 derivatives. Fluorinated fullerenes C60F2k. J Expt Theor Phys 111:395-412.
  • Sheka EF, Popova NA. (2012) Odd-electron molecular theory of the graphene hydrogenation. J Mol Mod 18:3751-3768.
  • Elias DC, Nair RR, Mohiuddin TMG et al. (2009) Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane. Science 323:610-613.
  • Sheka EF. (2011) Computational synthesis of hydrogenated fullerenes from C60 to C60H60. J Mol Mod 17:1973-1984.
  • Sheka EF, Popova NA (2011). When a covalent bond is broken? arXiv:1111.1530v1 [physics.chem-ph].
  • Sheka EF, Popova NA. (2012) Molecular theory of graphene oxide. arXiv:1212.6413 [cond-mat.mtrl-sci].
  • Sheka EF, Popova NA. (2012) Molecular theory of graphene oxide. Phys Chem Chem Phys (delivered).
  • Dreyer DS, Park S, Bielawski CW et al. (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240.
  • Zhu Y, Shanthi M, Weiwei C et al (2010). Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv Mater 22:3906–3924.
  • Kuila T, Mishra AK, Khanra P et al. (2013) Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale 5:52–71.
  • Wang H, Hu IH. (2011) Effect of Oxygen Content on Structures of Graphite Oxides. Ind Eng Chem Res 50:6132–6137.
  • Fujii S, Enoki T. (2010) Cutting of Oxidized Graphene into Nanosized Pieces. J Am Chem Soc 132:10034–10041.
  • Xu Z, Bando Y, Liu L et al. (2011) Electrical conductivity, chemistry, and bonding alternations under graphene oxide to graphene transition as revealed by in situ TEM. ACS Nano 5:4401–4406.
  • Wang S, Wang R, Liu X et al. (2012) Optical Spectroscopy Investigation of the Structural and Electrical Evolution of Controllably Oxidized Graphene by a Solution Method. J Phys Chem C 116:10702-10707.
  • Mattevi C, Eda G, Agnoli S et al. (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mat 19:2577-2583.
  • Sheka EF. (2010) Computational synthesis of hydrogenated fullerenes from C60 to C60H60. J Mol Mod 17:1973-1984.
  • Wang L, Zhao J, Sun Y-Y et al. (2011) Characteristics of Raman spectra for graphene oxide from ab initio simulations. J Chem Phys 135:184503 (5 pages).
  • Saxena S, Tyson TA, Negusse E. (2010) Investigation of the Local Structure of Graphene Oxide. J Phys Chem Lett 1:3433–3437.
  • Ambrosi A, Chee SY, Khezri B et al. (2012) Metallic impurities in graphenes prepared from graphite can dramatically influence their properties. Angew Chem Int Ed 51:500 –503.
  • Lu N, Li Zh. (2012) Graphene oxide: Theoretical perspectives. In J. Zeng et al. (eds.), Quantum Simulations of Materials and Biological Systems, Springer Science+Business Media Dordrecht, pp 69-84.
  • Levy N, Burke SA, Meaker KL et all. (2010) Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles Science 329:544-547.
  • Georgiou T, Britnell L, Blake P et al. (2011) Graphene bubbles with controllable curvature. Appl Phys Lett 99:093103 (3 pages).
  • Koenig SP, Boddeti NG, Dunn ML et al. (2011) Ultrastrong adhesion of graphene membranes. Nature Nanotechn. 6:543-546.
  • Sheka EF, Popova NA, Popova VA et al. (2011) Structure-sensitive mechanism of nanographene failure. J Exp Theor. Phys 112:602-611.
  • Sheka EF, Popova NA, Popova VA et al. (2011) A tricotage-like failure of nanographene. J Mol Mod 17:1121-1131.
  • Popova NA, Sheka EF. (2011) Mechanochemical reaction in graphane under uniaxial tension. J Phys Chem C 115:23745-23754.
  • Sheka EF, Shaymardanova LKh. (2011) C60-based composites in view of topochemical reactions. J Mater Chem 21:17128-17146.
  • Sheka EF. (2013) Topochemistry of spatially extended sp2 nanocarbons: fullerenes, nanotubes, and graphene. In Ashrafi AR, Cataldo F, Iranmanesh A et al (Eds.) Topological Modelling of Nanostructures and Extended Systems. Carbon Materials: Chemistry and Physics, vol. 7, Springer, Heidelberg, pp. xxx-yyy.
  • Sheka EF, Razbirin BS, Rozhkova NN et al. (2012) Nanophotonics of graphene quantum dots. Paper presented at the XV Intern. Conf. «Laser Optics-2012» St.Petersburg, Russia, 25-29 June 2012.
  • Sheka EF, Rozhkova NN. (2013) New carbon allotrope shungite as loosely packed fractal nets of graphene-base quantum dots. To be published.
  • Sheka EF. (2009) May silicene exist? http://arXiv.org/abs/0901.3663.
  • Sheka EF. (2013) Why sp2-like nanosilicons should not form: Insight from quantum chemistry. Int J Quant Chem 113:612-618.
  • Tang S, Cao Z. (2012) Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane. Phys Chem Chem Phys 14:16558-16565.
  • Hsu H-C, Shown I, Wei H-Y et al. (2013) Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 5:262-268.

Полнотекстовая электронная версия статьи – на вебсайте http://elibrary.ru