Том 6, №1, 2014
РусскийEnglish

НАНОСИСТЕМЫ



TOPOCHEMISTRY OF SPATIALLY EXTENDED sp2 NANOCARBONS: FULLERENES, NANOTUBES, AND GRAPHENE
Sheka Elena F.
Peoples' Friendship University of Russia, http://www.rudn.ru
117198 Moscow, Russian Federation

Поступила в редакцию 31. 03.2013

Представлена действительным членом РАЕН С.П. Губиным

This paper presents sp2 nanocarbons as a new class of topochemical species from the insight of the computational study of peculiar properties that accompany the formation of different composite, at least, one member of that is a sp2 nanocarbon. The composites, which are resulted from either the “double-(C–C)-bond” reactions between two sp2 nanocarbons or the “atom-(C–C)-bond” reactions, concerned with a monatomic species deposition on the nanocarbons, manifest clearly seen properties that can be addressed to the action of either internal or external topology. The internal topology is attributed to the inherited properties of each nanocarbon while the external topology is related to external factors that drastically influence the chemical reactions involving nanocarbons.

Keywords: formal topology; empirical topology, nanocarbons; topochemical reactions.

PACS: 68.35.BP, 68.65.PQ, 82.20.WT

РЭНСИТ, 2013, 5(2):15-44
ЛИТЕРАТУРА
  • Cataldo F, Graovac A, Ori O (eds). The mathematics and topology of fullerenes. New York, Springer, 2011.
  • Merrifield RE, Simmons HE. Topological methods in chemistry. New York, Wiley, 1989.
  • Schmidt GMJ. Pure Appl Chem, 1971, 27:647.
  • de Jong AWK. Ber Dtsch Chem Ges, 1923, 56:818.
  • Woodward RB, Hoffmann R. The conservation of orbital symmetry. Weinheim.Bergstr, Verlag Chemie, 1970.
  • Enkelmann V. Adv Polym Sci, 1984, 63:91.
  • Hasegawa M. Pure Appl Chem, 1986, 58:1179.
  • Boldyrev VV. React Solid, 1990, 8:231.
  • MacGillivray LR, Papaefstathiou GS. Encyclopedia of supramolecular chemistry. New York, Marcel Dekker, 2004, p. 1316. DOI:10.1081/E-ESMC 120012761.
  • Guo F, Marti-Rujas J, Pan Z, Hughes CE, Harris KDM. Phys Chem C, 2008, 112:19793
  • Sheka EF. Fullerenes: nanochemistry, nanomagnetism. nanomedicine, nanophotonics. Boca Raton, CRC Press, 2011, p. 312.
  • Sheka EF. Int J Quantum Chem, 2012, 112:3076.
  • Sheka EF. Int J Quantum Chem, 2004, 100:388.
  • Sheka EF. Chem Phys Lett, 2007, 438:119.
  • Sheka EF, Zayetz VA. Russ J Phys Chem, 2005, 79:2009
  • Sheka EF. Int J Quantum Chem, 2007, 107:2803.
  • Weaver JH, Martins JL, Komeda T, Chen Y, Ohno TR, Kroll GH, Troullier N, Haufler R, Smalley RE. Phys Rev Lett, 1991, 66:1741.
  • Wang X-B, Ding C-F, Wang L-S. J Chem Phys, 1999, 110:8217.
  • Wang Y, Holden JM, Bi X-X, Eklund PC. Chem Phys Lett, 1994, 217:413.
  • Davydov VA, Kashevarova LS, Rakhmanina AV, Senyavin VM, Pronina OP, Oleynikov NN, Agafonov V, Céolin R, Allouchi H, Szwarc H. Chem Phys Lett, 2001, 333:224.
  • Yamawaki H, Yoshida M, Kakudate Y, Usuba S, Yokoi H, Fujiwara S, Aoki K, Ruoff R, Malhotra R, Lorentz D. J Phys Chem, 1993, 97:11161.
  • Pekker S, Janossy A, Mihali L, Chauvet O, Forro L. Science, 1994, 265:1077.
  • Iwasa Y, Arima T, Fleming RM, Siegrist T, Zhou O, Haddon RC, Rothberg LI, Lyons KB, Carter HL Jr, Hebard AF, Tycko R, Dabbagh G, Kraewski JJ, Thomas JA, Yagi T. Science, 1994, 264:1570.
  • Zhao IB, Poirier DM, Pechman RJ, Weaver JH. Appl Phys Lett, 1994, 64:577.
  • Nakaya M, Kuwahara Y, Aono M, Nakayama T. Small, 2008, 4:538-541.
  • Ecklund PC, Rao AM, Zhou P, Wang Y, Holden JM. Thin Solid Film, 1995, 257:185.
  • Sheka EF, Razbirin BS, Starukhin AN, Nelson KD. Opt Spectrosc, 2007, 102:432.
  • Pac B, Petelenz P, Slawik M, Munn RW. J Chem Phys, 1998, 109:7932.
  • Kazaoui S, Minami N, Tanabe Y, Byrne HJ, Eilmes A, Petelenz P. Phys Rev B, 1998, 58:7689.
  • Friscicô T, MacGillivray LR. Z Kristallogr, 2005, 220:351.
  • Sheka EF, Shaymardanova LKh. J Mater Chem, 2011, 21:17128.
  • Sheka EF, Zayetz VA, Ginzburg IY. J Exp Theor Phys, 2006, 103:728
  • Fischer JE. Science, 1994, 264:1548.
  • Hedén M, Hansen K, Campbell EEB. Phys Rev A, 2005, 71:055201.
  • Enders A, Malinowski N, Ievlev D, Zurek E. J Chem Phys, 2006, 125:191102.
  • Sun Y-P, Ma B, Bunker CE, Liu B. J Am Chem Soc, 1995, 117:12705.
  • Pusztai T, Oszlányi G, Faigel G, Kamaras K, Granasy L, Pekker S. Solid State Commun, 1999, 111:595
  • Nakayama T, Onoe J, Nakatsuji K, Nakamura J, Takeuchi T, Aono M. Surf Rev Lett, 1999, 6:1073.
  • Kunitake M, Uemura S, Ito O, Fujiwara K, Murata Y, Komatsu K. Angew Chem Int Ed, 2002, 41:969.
  • Núñez-Regueiro M, Markes L, Hodeau J-L, Béthoux O, Perroux M. Phys Rev Lett, 1995, 74:278.
  • Soldatov ES, Roth G, Dzyabchenko AV, Johnels D, Lebedkin S, Meingast C, Sundqvist B, Haluska M, Kuzmany H. Science, 2001, 293:680.
  • Zhang X, Tang L, Guo Q. J Phys Chem C, 2010, 114:6433.
  • Giacalone F, Martín N. Adv Mater, 2010, 22:4220.
  • Nasibulin AG, Anisimov AS, Pikhitsa PV, Jiang H, Brown DP, Choi M, Kauppinen EI. Chem Phys Lett 2007, 446:109.
  • Nasibulin AG, Pikhitsa PV, Jiang H, Brown DP, Krasheninnikov AV, Anisimov AS, Queipo P, Moisala A, Gonzalez D, Lientschnig G, Hassanien A, Shandakov SD, Lolli D, Resasco DE, Choi M, Tom´ anek D, Kauppinen EI. Nat Nanotechnol, 2007, 2:156.
  • Li X, Liu L, Qin Y, Wu W, Guo Z-C, Dai L, Zhu D. Chem Phys Lett, 2003, 377:32.
  • Li C, Chen Y, Wang Y, Iqbal Z, Chhowallab M, Mitra S. J Mater Chem, 2007, 17:2406.
  • Lee KH, Eun HM, Park SS, Suh YS, Jung K-W,Lee SM, Lee YH, Osawa E. J Phys Chem B, 2000, 104:7038
  • Tian Y, Chassaing D, Nasibulin AG, Ayala P, Jiang H, Anisimov AS, Kauppinen EI. J Am Chem Soc, 2008, 130:7188.
  • Wu X, Zeng XC. ACS Nano, 2008, 2:1459.
  • Sheka EF, Chernozatonskii LA. Int J Quantum Chem, 2010, 110:1466.
  • Sheka EF, Chernozatonskii LA. Int J Quantum Chem, 2010, 110:1938.
  • Rut’kov EV, Tontegode AY, Usufov MM. Phys Rev Lett, 1995, 74:758
  • Wu X, Zeng XC. Nano Lett, 2009, 9:250.
  • Gao X, Zhou Z, Zhao Y, Nagase S, Zhang SB, Chen Z. J Phys Chem C, 2008, 112:12677.
  • Yan L, Zheng UB, Zhao F, Li S, Gao X, Xu B, Weiss PS, Zhao Y. Chem Soc Rev, 2012, 41:97.
  • Sheka EF, Chernozatonskii LA. J Comput Theor Nanosci, 2010, 7:1814.
  • Sheka EF, Shaymardanova LKh. 2011, arXiv:1101.4893 [cond-mat.mes-hall].
  • Haddon RC. Science, 1993, 261:1545.
  • Sheka EF, Chernozatonskii LA. J Phys Chem C, 2007, 111:10771.
  • Matsuo Y, Tahara K, Nakamura E. Org Lett, 2003, 5:3181.
  • Kondo D, Sato S, Awano Y. Appl Phys Express, 2008, 1:074003.
  • Sheka EF, Popova NA. 2012, arXiv:1201.1618v1 [cond-mat.mtrl-sci].
  • Sheka EF, Popova NA. J Mol Mod, 2012, 18:3751.
  • Sofo JO, Chaudhari AS, Barber GD. Phys Rev B, 2007, 75:153401.
  • Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS. Science, 2009, 323:610.
  • Sheka EF. J Exp Theor Phys, 2010, 111:395.
  • Sheka EF. J Mol Mod, 2011, 17:1973.
  • Sheka EF, Popova NA, PopovaVA, Nikitina EA, Shaymardanova LK. J Exp Theor Phys, 2011, 139:xxxx.
  • Sheka EF, Popova NA, PopovaVA, Nikitina EA, Shaymardanova LK. J Mol Mod, 2011, 17:1121.
  • Nikitina EA, Khavryutchenko VD, Sheka EF, Barthel H, Weis J. J Phys Chem A, 1999, 103:11355.
  • Sheka EF, Popova NA, Popova VA. 2012, arXiv:1209.xxxxv1 [cond-mat.mtrl-sci].&


Полнотекстовая электронная версия статьи – на вебсайте http://elibrary.ru