Том 7, №2, 2015
РусскийEnglish

НАНОСИСТЕМЫ



TRANSPORT PROPERTIES OF GRAPHENE BILAYER ON SUBSTRATE FROM EXACT ELECTRONIC GREEN'S FUNCTION

Nadezhda G. Bobenko, Alexander N. Ponomarev, Alexander A. Reshetnyak


Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, http://www.ispms.ru/
634021 Tomsk, Russian Federation
nlitvin86@rambler.ru, alex@ispms.tsc.ru, reshet@ispms.tsc.ru
Dalibor Čevizović
Vinča Institute of Nuclear Sciences, University of Belgrade, http://www.vin.bg.ac.rs/
P.O.Box 522, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
cevizd@vin.bg.ac.rs

Поступила в редакцию 15.10.2015


We consider two approaches to find both the longitudinal and Hall conductivities of AB-stacked bilayer graphene in dependence of frequency, finite chemical potential, temperature with magnetic field on a base of 2- and 4-band effective models. The relations to be important for optoelectronic among Hall conductivities and Faraday, Kerr angles in the AB-bilayers samples in the electric and magnetic fields when the radiation passes across bilayer sheets on different kinds of substrate are derived. We obtain the low-temperature electrical resistivity (conductivity) of the epitaxial graphene on a base of the temperature electron Green functions method adopted for carbon nanosystems from metallic system. The calculations of contribution to the conductivity (in addition to Drude part) is realized with account for multiple elastic scattering of electrons by impurities and structural inhomogeneities of short-range order.
Ключевые слова: graphene, band effective model, conductivity, temperature electron Green functions method, elastic scattering of electrons, structural inhomogeneities

PACS: 68.65.Pq, 72.80.Vp, 75.47.-m, 73.43.-f, 72.40.+w

Библиография – 15 ссылок

РЭНСИТ, 2015, 7(2):168-174 DOI: 10.17725/rensit.2015.07.168

ЛИТЕРАТУРА
  • Novoselov KS, McCann E, Morozov SV, Fal'ko VI, Katsnelson MI, Zeitler U, Jiang D, Schedin F, Geim AK. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat.Phys., 2006, 2(3):177-180.
  • McCann E, Fal'ko VI. Landau-Level Degeneracy and Quantum Hall Effect in a Graphite Bilayer. Phys. Rev. Lett., 2006, 96:086805.
  • McCann E, Abergel DSL, Fal'ko VI. Electrons in bilayer graphene. Solid State Commun., 2007, 143(1):110-115.
  • Falkovsky LA. Magneto-optics of monolayer and bilayer graphene. JETP Letters, 2013, 97(7):429-438.
  • Slonczewski JC, Weiss PR. Band Structure of Graphite. Phys. Rev., 1958, 109:272-279.
  • McClure JW. Band Structure of Graphite and de Haas-van Alphen Effect. Phys. Rev., 1957, 108(3):612-618.
  • Abrikosov AA, Gorkov LP, Dzyaloshinskii IE. Methods of quantum field theory in statistical physics. Moscow, Fizmatgiz Publ., 1962.
  • Egorushkin VE, Melnikova NV, Ponomarev AN, Reshetnyak AA. Anomalous thermal conductivity in multiwalled carbon nanotubes with impurities and short-range order. J. Physics: Conf. Series, 2010, 248(1):012005.
  • Gorbar EV, Gusynin VP, Kuzmenko AB, Sharapov SG. Magneto-Optical and Optical Probes of Gapped Ground States of Bilayer Graphene. Phys. Rev. B, 2012, 86:075414.
  • Gusynin VP, Reshetnyak AA, Sharapov SG, 2015 (in press).
  • Davydov SYu. Adsorption Induced Energy Gap in the Density of States of Single Sheet Graphene. Semiconductors, 2012, 46(2):193-198.
  • Dröscher S, Roulleau P, Molitor F, Studerus P, Stampfer C, Ihn T, Enssli K. Quantum capacitance and density of states of graphene. Appl. Phys. Lett., 2010, 96, 152104.
  • Egorushkin V, Mel'nikova N, Ponomarev A, Bobenko N. Low-temperature peculiarities of electron transport properties of carbon nanotubes. J. Mat. Sci. Eng., 2011, 1(2):161-167.
  • Egorushkin VE, Melnikova NV, Ponomarev AN, Bobenko NG. Low-Temperature Thermopower in Disordered Carbon Nanotubes. Nanosystems, 2013, 4(5):622-629.
  • Wallace PR. The Band Theory of Graphite. Phys. Rev., 1947, 71(9):622-634.


Полнотекстовая электронная версия статьи – на вебсайтах http://elibrary.ru и http://rensit.ru/vypuski/article/188/7(2)-168-174.pdf