О ХИМИЧЕСКОЙ УСТОЙЧИВОСТИ СТРУКТУРЫ И ФИЗИЧЕСКИХ ХАРАКТЕРИСТИК ВЫСОКОТЕМПЕРАТУРНОГО СПИНТРОНИЧЕСКОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА EuO:Fe ПРИ НОРМАЛЬНЫХ УСЛОВИЯХ

¹Борухович А. С., ²Бамбуров В. Г.

¹Российский государственный профессионально-педагогический университет, http://www.rsvpu.ru/ Екатеринбург 620012, Российская Федерация

²Институт химии твердого тела Уральского отделения РАН, http://www.ihim.uran.ru/ Екатеринбург 620990, Российская Федерация

Поступила в редакцию 30 мая 2018, принята 28 июня 2018 Представлена действительным членом РАЕН С.П. Губиным

Рассмотрена возможность формирования ограниченного твердого раствора Eu_{1-x}Fe_xO в структуре спинтронного композиционного материала EuO:Fe, полученного методом высокотемпературной твердофазной редукции смеси более высоких оксидов металлов. Его преобладающая роль в формировании выдающихся физических свойств этого композита как высокотемпературного спинового инжектора описывается экспериментальными и теоретическими данными.

Ключевые слова: монооксид европия, твердый раствор, ферромагнетизм, суперпарамагнетизм, наночастицы, ЯГР (эффект Мёссбауэра), намагниченность, спинтроника

УДК 548.4; 548.73; 548.735.6

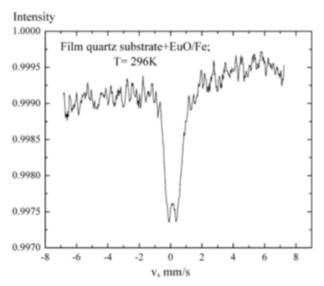
Содержание

- 1. Введение (403)
- 2. Экспериментальные данные (404)
- 3. Теория (407)
- 4. Заключение (409)

Λ итература (409)

1. Введение

Считается [1], что металлическое железо не растворяется в монооксиде европия и не образует с ним независимую кристаллическую фазу в виде твердого раствора (TT) Eu, Fe O. Однако это не означает, что такие TT не могут возникать, по меньшей мере, частично или в ограниченных областях составов в более сложных многофазных композитах, содержащих оксиды европия и железа. В частности, в спинтронном композите EuO:Fe, синтезированном из высших оксидов европия (Ец₂О₂) и железа (Fe₂O₂) методом высокотемпературного твердофазного синтеза [2]. Экспериментально подтверждено [3], что еще несколько независимых кристаллических фаз сосуществуют в таком композите в дополнение к вышеупомянутым суперпарамагнитных частиц наноразмерного металлического железа до оксидов обоих


металлов в разных состояниях окисления. Однако именно наличие этого ТТ определяет выдающиеся физические характеристики данного композита – его высокую удельную намагниченность (40-60 emu/g при комнатной температуре, T), повышенную температуру Кюри, $T_{c} = 480$ K и полупроводниковую проводимость в диапазоне составов 0.15 < x <0.25. Этот композиционный материал является перспективным в создании полупроводниковых спинтронных устройств, способных стабильно работать при комнатной температуре, обеспечивая при этом повышенную степень передачи спинового тока, $P \approx 60\%$ [4]. Такой симбиоз фаз в одном материале в значительной степени способствует химической стабильности этого композита, находящегося как в объемном, тонкопленочных состояниях нормальных условиях окружающей среды. Об этом свидетельствует полная идентичность экспериментальных данных, полученных на образцах разных серий синтеза после длительных (нескольких лет) интервалов их хранения. Данные представлены ниже.

2. ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ

В соответствии с данными [5, 6] приводятся результаты экспериментальных исследований ядерного гамма-резонанса (ЯГР) и магнитных параметров композита EuO:Fe. образцов спектроскопия композитных изучалась использованием стандартного спектрометра SM-2201 с источниками ⁵⁷Fe и ¹⁵¹Sm₂O₃. Их магнитные параметры при низких температурах исследовались с использованием СКВИД-магнитометра типа MPHS-XL7, а при повышенных температурах - на магнитных весах, работа кооторых основана на использовании метода Фарадея.

На **рис.** 1 представлены спектры ядерного гамма-резонанса (или эффекта Мессбауэра) объемного образца композита EuO:Fe для изотопа ⁵⁷Fe при комнатной температуре. Они характеризуются типичным ферромагнетизмом и содержат по меньшей мере два шестерки зеемановских линий: одну с $H_{\rm eff}=32.8{\rm Tl},~\delta=0,$ $\Delta E=0,$ другую с $H_{\rm eff}=19.2{\rm Tl},~\delta=+0.20$ мм/с, $\Delta E=0.005$ мм/с.

Эти отосятся наночастицам К α-Fe и кластерам Eu-Fe-O соответственно. Относительная интенсивность их синглетов составляет I (α -Fe) \approx 0.72; I (Eu-Fe-O) \approx 0.28. Из чего можно сделать вывод, что присутствие железа в композите, в основном, соответствует его свободному (металлическому) состоянию. Доля ферромагнитных кластеров в нем значительно меньше, что согласуется с малой вероятностью образования твердых растворов EuO с Fe в кубической решетке EuO. Возникновение ионного состояния железа в композите следует рассматривать их

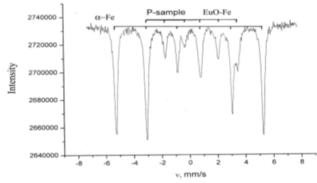
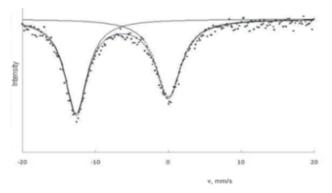


Рис. 2. Мёссбауэровские спектры тонких пленок композита ⁵⁷ Fe на кварце.


в качестве примесных центров, образующих кластеры Eu-Fe-O, в результате возможного химического взаимодействия их с катионами европия в соответствии с механизмом непрямого *d-f*-обмена [7].

В тех же условиях мессбауэровские спектры ⁵⁷Fe композитных пленок (**рис. 2**) представляют собой синглет с изомерным сдвигом $\delta =$ +0.20 мм/с и с очень слабым расщеплением, характерным для суперпарамагнитных частиц α-Fe. Эти данные свидетельствуют о том, что высокотемпературный магнетизм обусловлен наличием в нем ферромагнитного упорядочения кластеров Eu-Fe-O суперпарамагнитных наночастиц α-Fe. Как показано ниже, это полностью подтверждается магнитными исследованиями композита.

Катионное состояние атомов европия в композите иллюстрирует спектр ЯГР на изотопе

Рис. 1. Спектры NGR порошка ⁵⁷Fe композита EuO:Fe при комнатной температуре.

Рис. 3. Мессбауэровский спектр порошка композита ¹⁵¹Еи при комнатной температуре.

¹⁵¹Eu, рис. 3. Он представляет собой перекрытие двух линий, характеризующихся изомерными сдвигами $\delta = 12.6$ мм/с и $\delta = + 0.02$ мм/с, и обладающими шириной на половине высоты, равной 3.7 мм/с и 4.1 мм/с соответственно. Первая линия соответствует парамагнитному иону матрицы Eu²⁺; вторая линия отвечает за проявление валентного состояния Eu³⁺. Заметим, что такие изомерные сдвиги спектров ЯГР на ¹⁵¹Eu в композите соответствуют положениям этих катионов в решетках EuO и Eu₂O₃ [8]. Полученные спектры и положение изомерных сдвигов ионов Eu²⁺ и Eu³⁺ в них также хорошо согласуются с исследованием ЯГР-спектров тонких пленок магнитного полупроводника EuS, легированных наночастицами монокристаллов оксидов TiO_2 , Al_2O_3 и SiO_2 [9].

Наличие ионов Eu³⁺ в композите, одной стороны, можно рассматривать примесную фазу Еи₂О₃ из-за условий синтеза - высокотемпературное восстановление смеси полуторных оксидов (Eu₂O₂ + Fe₂O₃) с углеродом. Исходя из результатов химического и рентгеноспектрального анализов, наличие этой фазы в композите не превышало ≤1 мас.%.

С другой стороны, сравнение интенсивностей спектральных линий состояний ионов Eu³⁺ (~ 0.55) со спектром ионного состояния линий Eu²⁺ (~ 0.45) может указывать на проявление композите некоторого «индукционного» эффекта, связанного с переносом электронной плотности между ядрами атомов железа и европия. Это, как отмечалось выше, может соответствовать проявлению косвенного (через *p*-состояние кислорода) *d*-fобмена между железом и европием с образованием кластеров Eu-Fe-O. Возможная передача электронной плотности из Eu²⁺ в железо (даже частичная) приведет к поляризации спинов этих ионов, что в этих условиях эквивалентно проявлению их ионного состояния в кластере как Eu³⁺, а состояния иона железа в виде Fe⁺. В результате ферромагнитный момент такого кластера $Eu^{3+}Fe^{+}O$ при T > 70 K(температура ферромагнитного разупорядочения фазы EuO), вызванный спиновой поляризацией парамагнитных ионов европия из ближайшего окружения примеси Fe⁺-иона и локализованный на нем, может оказаться большим по сравнению с магнитным моментом атомного железа.

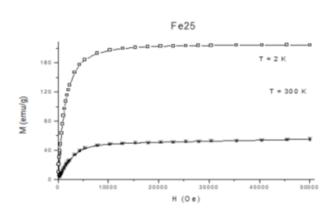


Рис. 4. Зависимость момента магнитного насыщения композита (EuO) $_{0.75}$ Fe $_{0.25}$ om H.

Рассмотрим теперь магнитные характеристики образцов композита, измеренные в широком диапазоне температур и величин внешнего магнитного поля. На рис. 4 показана зависимость ферромагнитного насыщения М(Н) композита состава (EuO) $_{0.75}$ Fe $_{0.25}$ при T=2 K и T=300 K, а на **рис. 5** (a, b) – его температурные зависимости, M(T).

Из этих данных следует, что композит на самом деле представляет собой гетерогенную смесь, состоящую, по меньшей мере, из трех ферромагнитно упорядоченных по порядку фаз. В этом случае значение намагниченности Feкомпоненты для этого диапазона концентраций линейно соответствует присутствию железа в композите [2].

При комнатной температуре величина ферромагнитного момента насыщения композита указанного состава близка к значению $M \approx 60$ emu/g, что полностью соответствует Feкомпоненте, хотя оно в абсолютном выражении и превышает его примерно на 10÷15 единиц. При низких температурах ферромагнитный момент композита характеризуется, в основном, вкладом двухвалентного иона европия, на фоне которого вклад железа в М составляет ≤ 30%. На всем протяжении температурного диапазона образцы

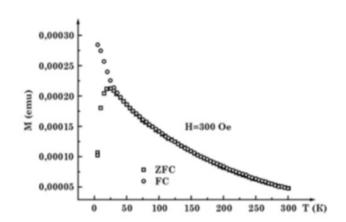
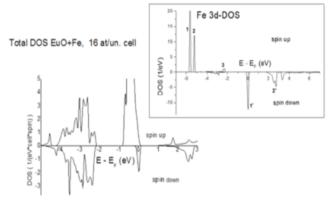


Рис. 5. Температурные зависимости намагниченности композита при низких (а) и повышенных температурах (б).

композита проявляют свойства магнитно-мягкого ферромагнетика. Особенностью зависимости M(T) на рис. 5b является ее перегиб в области T≈ 480 К, что характерно для ферромагнитного разупорядочения магнитоструктурной Если подобный переход «ферро-пара» фазы EuO происходит в области Т ≈ 70 K и аналогичный ему для Fe-компоненты композита наблюдается при $T \approx 1000 \, \text{K}$, то в вышеуказанном температурном диапазоне должна испытывать "порядок-беспорядок" переход суперпарамагнитная составляющая (т.е. ферромагнитная фаза) композита. Она же должна отвечать и за увеличение значения его удельной намагниченности (момента магнитного диапазоне комнатной насыщения) В OTтемпературы и выше (до 480 К). Как следует из приведенных ЯГР-спектров композита, такая ферромагнитная упорядоченная структурная фаза может быть только при наличии кластера (твердого раствора) Eu³⁺Fe⁺O с температурой Кюри в нем, $T_{c} = 480 \text{ K}.$

Поведение намагниченности композитных пленок, полученных способом «вспышки» [3], хорошо коррелирует с данными на рис. 5 характерные особенности зависимостей M(T)также проявляются и в пленках. Их кривая намагничивания (гистерезис) при нормальных условиях комнатных температур в легком направлении близка к прямоугольной, насыщение достигается в полях $H \approx 0.5$ Т1. Однако открытие петли гистерезиса при этом не наблюдается. Таким образом, величина магнитного момента композита достигает $M \approx 4\mu_{\rm p}$, что коррелирует в этих условиях с присутствием магнитоактивных Fе-центров в нем. Это значение *M* превышает характерное значение магнитного момента чистого железа почти на 20%, что полностью соответствует вкладу, получаемому таким Feпримесным центром из среды его ближайшего окружения парамагнитными моментами ионов европия.

В то же время исследования зависимости M(T) при охлаждении композитных пленок до низких температур во внешнем магнитном поле (условие FC) и без поля (H = 0, условие ZFC) выявили еще одну особенность. именно, наличие перегиба этой зависимости в области температур $T = 25 \div 30 \text{ K}$ (рис. 6).


Рис. 6. Намагниченность композитной пленки (EuO)_{0.75} $Fe_{0.25}$ на кремниевой подложке в условиях ZFC и FC.

Эта так называемая «температура блокировки» $(T_{\rm bl})$ переход ИЗ антиферромагнитно упорядоченного состояния (при $T < T_{\rm bl}$) к суперпарамагнитным (при $T > T_{\rm hl}$) α -железным наночастицам в композите. Физически это что магнитные моменты наночастиц при $T \leq T_{\rm bl}$ антиферромагнитно ферромагнитно-упорядоченным связаны состоянием ионов матрицы Eu²⁺. Это приводит к общему уменьшению магнитного момента композита при $T=0~{\rm K}$ до значения M=180emu/g. Для сравнения: при тех же условиях «чистый» монооксид EuO имеет рекордное значение M = 240 emu/g для ферромагнетиков. Однако при $T \ge T_{\rm bl}$ ситуация меняется на прямо противоположную - суперпарамагнитные α-Fe наночастицы способствуют росту магнитного момента кластера EuO:Fe (твердого раствора) в композитепомереуменьшениянамагниченности и разупорядочения Eu²⁺ катионов матрицы. Согласно представленным данным, суммарный ферромагнитный момент такого кластера (твердого раствора) при комнатной температуре численно превышает величину в 10 emu/g, соответствующую ферромагнитному моменту насыщения, свойственному чистому железу при этих температурах. В связи с этим, в целом, принимая во внимание этот магнитный параметр, можно заключить, что по нему данный композит является на сегодгя рекордсменом известных ферромагнитных среди всех материалов, особенно полупроводниковых, которые рекомендуются для использования в спинтронике. При использовании композита

в качестве спинового инжектора эти качества, в частности, могут способствовать также увеличению степени переноса спинового тока в спинтронных структурах, созданных с его участием [4].

3. ТЕОРИЯ

Для возможного теоретического обоснования понимания закономерности поведения экспериментальных параметров композита был выполнен модельный расчет зонной электронной структуры твердого раствора Eu, Fe,O, который структурно состав композита [10].Метод включал использование линейного расчета метода присоединенных плоских (FLAPW, КОД WIEN2k) С обобщенным градиентным приближением (GGA) обменнокорреляционного потенциала [11]. В последние аналогичный метод расчета голы применен к EuO и EuS-фазам, легированным редкоземельными металлами, и обеспечивал хорошую корреляцию с экспериментом [12, 13]. При расчетах была построена суперрешетка, получаемая путем трансляции элементарной EuO кристаллографических ячейки ВДОЛЬ осей при замене одного из катионов европия на ион железа. Не вдаваясь в подробности подобных расчетов проведения систем сильно коррелированными электронами, включающими и соединения Еи, и выполнения определенных поправок к их полосовым спектрам [14], проанализируем только результаты теоретического моделирования ПЛОТНОСТИ зонных состояний примесей оксида европия,

Рис. 7. Плотность электронных состояний TP Eu, Fe O с выделением парциальной плотности электронных 3d-состояний

легированного железом, что свидетельствует об их хорошем согласии с приведенными выше экспериментальными данными. Эти результаты проиллюстрированы на рис. 7, где наряду с окончательной картиной зонного спектра твердого раствора выделяется парциальная плотность электронных 3d состояний железа.

Из них следует, что зонные состояния, образованные главным образом 2р-орбиталями атомов кислорода, расположены ниже энергий –2эВ, тогда как в области выше 0.5 эВ существуют зонные состояния, образованные 5*d*-орбиталями атомов европия (энергия состояний относительно Ферми уровня). Состояния зоны, образованные 4*f*-орбиталями европия, расположены в окрестности уровня Ферми. Энергия активации проводимости ΔE - зона между уровнем Ферми, расположенным вблизи потолка 4f-зоны, и нижней частью 5d-полосы - составляет 0.8 эВ, что хорошо согласуется с экспериментальным значением $\Delta E = 0.75$ эВ [3]. Также расчеты хорошо воспроизводят интервал между максимумами 2*p* О- и 4*f* Еu-состояний, равный 2.5 эВ [15].

Наиболее значительными изменениями характеризуется спектр зонных состояний EuO при его легировании железом выявляется появление двух полос состояний положительным направлением при энергии около -6 эВ и одной полосы с отрицательным спиновым направлением на уровне Ферми. Расчетны значения магнитных моментов, полученные на ионах Fe, составляли $3.74~\mu_{\rm B}$, а на катионах ${\rm Eu}^{2+}$ они составляли от 6.86 до 6.88 $\mu_{\scriptscriptstyle B}$. Чтобы объяснить эти значения, рассмотрим парциальную плотность 3*d*-состояний атомов железа, которая аддитивно входит в спектр зоны этого ТТ. Пики состояний spin-up зонной плотности, отмеченные на рис. 7 цифрами 1 и 2, имеют тип локальной симметрии t_{2g} и e_{g} , и содержат 3 + 2 электрона. Другой пик зонной плотности 3d Fe-состояний (пик 3) расположен в верхней части валентной 2р О-зоны, что является следствием гибридизации 2p О- и 3d Fe-состояний. Пик 1' соответствует spin-down 3d Fe-состояний с локальной симметрией $\ell_{_{\sigma}}$ -типа: он содержит один электрон. Пик 2' соответствует пустой зоне 3d Fe spin-down состояний. Отсюда следует, что ионы железа в

структуре монооксида сохраняют 6 электронов, т.е. находятся в зарядовом состоянии 2⁺ и будут иметь магнитный момент, равный 4 д, что соответствует приведенным выше данным. Спиновая полоса 4*f*-состояний в окрестности Ферми содержит ~7 электронов, т.е. магнитный момент атомов Eu равен $\sim 7\mu_{\rm B}$, что также соответствует приведенным выше значениям.

Причиной наличия больших магнитных моментов на атомах железа является заметное обменное расщепление состояний ионов железа - около 5 эВ (рис. 7), так что большинство spindown состояний железа не заселены электронами. В результате магнитный момент на катионах Fe²⁺ по величине на 1.7 $\mu_{\scriptscriptstyle B}$ выше, чем магнитный момент чистого железа. Соответственно, при комнатной температуре численное значение намагниченности насыщения композита за счет легирования достигает значений 40÷60 emu/g [2]. Поскольку 3*d*-орбитали железа в гораздо меньшей степени локализованы в пространстве, чем 4/-состояния европия, появление атомов железа в структуре монооксида приводит к увеличению обменного взаимодействия между f- и d-катионами и, как следствие, к увеличению температуры Кюри композита. Отметим также, что в диапазоне энергий от 0.9 до 1.3 эВ, то есть вблизи дна зоны проводимости, нет состояний с нисходящей зоной. Это может означать, что даже в присутствии атомов железа возможна 100-процентная спиновая поляризация носителей заряда, что соответствует ранее указанным значениям спиновой поляризации P в чистом EuO [16]. Таким образом, существование ферромагнитно упорядоченной фазы виде обозначенного TT в композите EuO:Fe полностью отвечает за экспериментальное наблюдение в нем при комнатной температуре рекордной степени переноса спинового тока.

Проследим также возможное соответствие проведенного расчета зонного спектра твердого раствора с электронными параметрами композита, связанными с проявлениями его других структурных компонентов. Во-первых, это касается данных ЯГР-исследований композита и возможности осуществления в нем «индукционного» эффекта переноса электронной плотности из ионов Eu²⁺ на примесные ионы Fe²⁺, введенные в решетку матрицы. Наличие такой передачи, которая может интерпретироваться как переход части ионов европия Eu^{2+} в состояние Eu^{3+} , а некоторых ионов железа в состояние Fe⁺, не противоречат результатам расчетов электронной зонной структуры твердого раствора, хотя они непосредственно не следуют из них. По данным выполненного расчета приблизительно 0.03 состояний из 4/состояний (для атома европия) остаются пустыми. С другой стороны, можно отметить, что полоса 3d-состояний железа (с отрицательным значением проекции спина, spin-down) асимметрична относительно уровня Ферми. Т.е. число состояний, занятых электронами (слева от энергии Ферми), несколько больше (их обнуление соответствует энергии -0.15 эВ), чем количество пустых состояний в этой зоне (справа от энергии Ферми, обнуление при 0.1 эВ). Оба этих обстоятельства указывают на то, что на самом деле имеется небольшой перенос электронной плотности из состояния 4f Eu^{2+} в состояние 3d Fe^{2+} (около 0.03 электрона на примесный Fe-узел).

вычисления, большинство как И подобных расчетов методами теории функционала электронной плотности, соответствуют температуре T = 0 К. Очевидно, что некоторое «размытие» уровня Ферми с увеличением температуры может сопровождаться несколько более высокой передачей электронной плотности из 4f Eu-состояний в 3d Fe-состояния.

Второй пример касается экспериментальных данных на рис. 6 – наличия температуры «блокировки» – спиновой переориентации магнитных моментов наночастиц свободного железа в композитной структуре и перехода из антиферромагнитно упорядоченного состояния в суперпарамагнитное состояние при T > 25К. Такая спиновая переориентация во многом аналогична переходам спиновой ориентации редкоземельных металлах, наблюдаемых при низких температурах [17]. Тем не менее, само указание на антипараллельность спинов наночастиц железа в ТТ по отношению к спиновому состоянию Eu^{2+} -катионов при T=0К влечет за собой необходимость наличия такой температуры - $T_{\rm bl}$ при T > 0 К. Что также может указывать на предсказательную способность подобных расчетов.

4. ЗАКЛЮЧЕНИЕ

Таким образом, сравнение результатов теоретических расчетов электронной зонной структуры ТТ Eu, Fe O с экспериментальными композита исследованиями спинтронного EuO:Fe свидетельствует удивительно хорошем согласии их между собой и о обоснованным теоретической модели легирования решетки монооксида и самого метода, используемого при расчете его электронной зонной структуры. Показано, что наличие этого ТТ в композите обеспечивает его повышенную температуру Кюри. В то же время катионы железа находятся в нем в высокоспиновом состоянии, на 1.7 д превышающем собственный магнитный момент чистого железа. Показано также, что катионы железа и европия в структуре монооксида имеют степень окисления, близкую к 2+. Как в чистом, так и в Fe-легированном монооксиде, состояния вблизи дна зоны проводимости (5*d*-состояние европия) являются 100% спинполяризованными. Что делает возможным, как уже отмечалось, достижение рекордной степени передачи спинового тока из композита, когда он используется в качестве инжектора спиновых носителей в полупроводниковых устройствах электроники при температурах. Показано, что в Fe-легированном монооксиде происходит незначительный плотности электронной перенос ионов Eu²⁺ к ионам Fe²⁺. Но основным фактором, обеспечивающим присутствие ионов Eu³⁺ в композите и наблюдаемом в экспериментах - это наличие наночастиц железа, и по-видимому, нанокластеров Еи₂О₃ в его структуре. Их присутствие обеспечивает долгосрочную химическую стабильностью состава и физических параметров композита в нормальных условиях. Как для образцов этого композита в объемном, так и в тонкопленочном состояниях. Это следует из имеющегося у нас опыта работы с этим спинтронным материалом [18]. дальнейшее использование высокотемпературной спинтронике и создание соответствующих устройств, частности, спинового транзистора, как нам представляется, возможно при освоении тонкопленочной композитной технологии в методе молекулярной

эпитаксии из высших оксидов европия и железа. Как наиболее экономически обоснованного соответствующего промышленному производству композитных пленок необходимым набором физических и физикохимических характеристик. В отличие от менее эффективного и более затратного метода «вспышки» - метода синтеза тонких пленок такого композита, основанного на предварительном синтезе объемного материала-прекурсора [3].

заключение отметим, что подобная совокупность фазовых компонентов, способствующая долговременному сохранению выдающихся свойств ЭТОГО композита возможному применению В высокотемпературного спинтронного материала, воспроизводилась только в случаях, когда он синтезировался из высших оксидов металлов. синтезировать вышеупомянутые однофазные ТТ с присущими этому композиту свойствами из металлов до сих пор не увенчались успехом.

ЛИТЕРАТУРА

- 1. Ahn KA, Shafer MW. J Appl. Phys., 1970, 41:1260.
- 2. Borukhovich AS, Ignat'eva NI, Bamburov VG et al. Doklady RAS, 2005, 402:181.
- 3. Borukhovich AS, Galyas AI, Demidenko OF et al. Inorganic Materials, 2009, 45:254.
- 4. Borukhovich AS. J. Mod. Phys., 2013, 4:306.
- 5. Borukhovich AS, Ignat'eva NI, Galyas AI et al. Journal of Nanoelectronics and Optoelectronics, 2008,
- 6. Borukhovich AS, Ignat'eva NI, Stognii AI et al. *IETPh Letters*, 2009, 89:215.
- 7. Altshuler TS, Gorunov YI, Bresler MC. JETPh, 2006, 130:729.
- 8. Nemov SA, Marchenko AV, Seregin PP et al. Physic and Chemistry of the Glass, 2007, 33:897.
- 9. Tanaka K, Tatehata N, Fujita K et al. Journal of *Appl. Phys.*, 2001, 89:2213.
- 10. Anoshina OV, Zhukov VP, Borukhovich AS. Sol. State Phys., 2015, 57:2173.
- 11. Perdew JP, Burke S, Ernzerh MJ. Phys. Rev. Lett., 1996, 77:3865.
- 12. An JM, Barabach SV, Osolins V. Phys. Rev. B, 2010, 83:064105.
- 13. An JM, Belashchenko KD. Phys. Rev. B, 2013, 88:054421.

- 14. Anisimov VI, Solovyev IV, Korotin MA et al. Phys. Rev. B, 1993, 48:16929.
- 15. Eastman DE, Holtzberg F, Methfessel S. Phys. Rev. Lett., 1969, 23:226.
- 16. Auslender MI, Irkhin VY. Solid State Commun, 1984, 50:1003.
- 17. Belov KP, Zvezdin AK, Kadomtseva AM et al. Orientational transitions in rare earth magnetics. Moscow, Nauka Publ., 1979, 320 p.
- 18. Borukhovich AS, Troshin AV. Europium Monoxide-Semiconductor and Ferromagnet for Spintronics. Springer International Publishing, 2018, 190 p.

Борухович Арнольд Самуилович

 $\partial.\phi$.-M.H., $npo\phi$.

Российский государственный профессиональнопедагогический университет

11, ул. Маншиностроителей, Ексатеринбург 620083, Россия a.borukhovich@gmail.com

Бамбуров Виталий Григорьевич

д.х.н., проф., чл.-корр. PAH

Институт химии твердого тела УрО РАН

91, ул. Первомайская, Екатеринбург 620990, Россия bam@ihim.uran.ru

ON THE CHEMICAL STABILITY OF THE STRUCTURE AND PHYSICAL CHARACTERISTICS OF THE HIGH-TEMPERATURE SPINTRONIC COMPOSITE EUO: FE UNDER NORMAL CONDITIONS

Arnold S. Borukhovich

Russian State Vocational Pedagogical University, http://www.rsvpu.ru/ Yekaterinburg 620083, Russian Federation

Vitaly G. Bamburov

Solid State Chemistry Institute of Ural Division of RUS, http://www.ihim.uran.ru/ Yekaterinburg 620990, Russian Federation a.borukhovich@gmail.com, bam@ihim.uran.ru

Abstract. The possibility of forming a limited solid solution Eu, Fe O in the structure of a spintronic composite material EuO:Fe obtained by the high-temperature solid-phase reduction method of a mixture of higher metal oxides is discussed. Its prevailing role in the formation of outstanding physical properties of this composite as a high-temperature spin injector is described from experimental and theoretical data.

Keywords: europium monoxide; solid solution; ferromagnetism; super paramagnetic; nanoparticles; NGR (Mössbauer effect); magnetization; spintronics

UDC 548.4; 548.73; 548.735.6

Bibliography - 18 references

Received May 30, 2018; accepted Juni 28, 2018

RENSIT, 2018, 10(3):403-410

DOI: 10.17725/rensit.2018.10.403