DOI: 10.17725/rensit.2023.15.013

Гибкий датчик влажности и температуры на основе пленочных структур полимерных нанокомпозитов с углеродными нанотрубками ¹Сергеев В.А., ¹Васин С.В., ²Ефимов М.С.

¹Институт радиотехники и электроники им. В.А. Котельникова РАН, Ульяновский филиал, http:// www.ulireran.ru/

Ульяновск 432071, Российская Федерация

²Ульяновский государственный технический университет, https://www.ulstu.ru/

Ульяновск 432027, Российская Федерация

E-mail: sva@ulstu.ru, vs0902@mail.ru, efimovmix@mail.ru

Поступила 15.11.2022, рецензирована 22.11.2022, принята 29.11.2022

Аннотация: Представлен краткий обзор датчиков влажности и температуры на основе пленочных структур нанокомпозитных материалов. Рассмотрены возможности и перспективы сорбционно-импедансных датчиков влажности И резистивных датчиков температуры на основе полимерных нанокомпозитов С углеродными наполнителями. Приведены результаты исследований зависимостей электропроводности нанокомпозитных пленок на основе поливинилового спирта с магниточувствительными многостенными углеродными нанотрубками от влажности и температуры. Предложена структура и электрическая схема гибкого двухпараметрического датчика влажности и температуры в виде двух последовательно соединенных нанокомпозитных пленочных резисторов, размещенных на гибкой силиконовой подложке, один из которых защищен влагонепроницаемым покрытием. Обсуждаются вопросы калибровки датчика.

Ключевые слова: гибкий датчик, полимерные нанокомпозиты, пленочные структуры, углеродные нанотрубки

УДК 539.23

Благодарности: Работа выполнена в рамках государственного задания УФИРЭ им. В.А. Котельникова РАН, тема "Купер".

Для цитирования: Сергеев В.А., Васин С.В., Ефимов М.С. Гибкий датчик влажности и температуры на основе пленочных структур полимерных нанокомпозитов с углеродными нанотрубками. *РЭНСИТ: Радиоэлектроника. Наносистемы. Информационные технологии,* 2023, 15(1):13-20. DOI: 10.17725/ rensit.2023.15.013.

Flexible Humidity and Temperature Sensor Based on Film Structures of Polymer Nanocomposites with Carbon Nanotubes

Vyacheslav A. Sergeev, Sergey V. Vasin

Kotelnikov Institute of Radioengineering and Electronics of RAS, Ulyanovsk branch, http://www.ulireran.ru/ Ulyanovsk 432071, Russian Federation *E-mail: sva@ulstu.ru, vs0902@mail.ru*

Mikhail S. Efimov

Ulyanovsk State Technical University, https://www.ulstu.ru/ Ulyanovsk 432027, Russian Federation E-mail: efimovmix@mail.ru Received 15 Novemder 2022, peer-reviewed 22 Novemder 2022, accepted 29 Novemder 2022

Abstract: A brief review of humidity and temperature sensors based on film structures of nanocomposite materials is presented. The possibilities and prospects of sorption-impedance humidity sensors and resistive temperature sensors based on polymer nanocomposites with carbon

14 СЕРГЕЕВ В.А., ВАСИН С.В., ЕФИМОВ М.С.

РАДИОЭЛЕКТРОНИКА

fillers are considered. The studies results of the electrical conductivity dependences of nanocomposite films based on polyvinyl alcohol with magnetically sensitive multi-walled carbon nanotubes on humidity and temperature are presented. The structure and electrical circuit of a flexible two-parameter humidity and temperature sensor are proposed, in the form of two seriesconnected nanocomposite film resistors placed on a flexible silicone substrate, one of which is protected by a moisture-proof coating. Issues of sensor calibration are discussed.

Keywords: flexible sensor, polymer nanocomposites, film structures, carbon nanotubes

UDC 539.23

Acknowledgments: The work was carried out within the framework of Kotelnikov UFIRE of RAS state task, theme "Cooper".

For citation: Vyacheslav A. Sergeev, Sergey V. Vasin, Mikhail S. Efimov. Flexible humidity and temperature sensor based on film structures of polymer nanocomposites with carbon nanotubes. *RENSIT: Radioelectronics. Nanosystems. Information Technologies*, 2023, 15(1):13-20e. DOI: 10.17725/rensit.2023.15.013.

Содержание

- 1. Введение (14)
- 2. Датчики влажности и температуры на основе полимерных нанокомпозитов (14)
- 3. Зависимости электропроводности полимерных нанокомпозитов с УНТ от влажности и температуры (15)
- 4. Двухпараметрический гибкий датчик влажности и температуры (17)
- 5. Выводы (19)

Литература (19)

1. ВВЕДЕНИЕ

Определение температуры и влажности газовых сред, жидкостей, твердых и сыпучих тел актуальная задача практически для всех сфер промышленности, хозяйственной и научной деятельности, различного типа производств. Все методы определения влажностных показателей делятся на прямые и косвенные. Прямой способ подразумевает непосредственное отделение сухого вещества в исследуемом материале Принцип OT влаги. косвенных методов заключается в измерении физических величин, имеющих функциональную связь с влажностью вещества или материала [1,2]. Необходимость контролировать и регулировать содержание влаги в различных веществах способствовало разработке и развитию компактных датчиков влаги. Современные сенсорные датчики помимо высокой точности, чувствительности и быстроты операций должны иметь широкий рабочий диапазон и стабильность показаний.

Для многих приложений в робототехнике, зоотехнике мелицине. И др. требуется размещать датчик на неплоских поверхностях, на поверхности объектов, изменяющих свою форму, с обеспечением плотного контакта и без разрушения чувствительного элемента. При этом, как правило, необходимо одновременно измерять влажность температуру И И контролируемой среды или объекта. В настоящей создания и работе показана возможность предложена конструкция электрическая И схема гибкого двухпараметрического датчика влажности и температуры на основе полимерных нанокомпозитных пленок с различными проводящими наполнителями, включая углеродные нанотрубки (УНТ).

2. ДАТЧИКИ ВЛАЖНОСТИ И ТЕМПЕРАТУРЫ НА ОСНОВЕ ПОЛИМЕРНЫХ НАНОКОМПОЗИТОВ

Для определения незначительных концентраций влаги применяются датчики сорбционного типа. Главный функциональный элемент таких датчиков – сорбционный слой, который способен поглощать пары воды. Часто в роли такого слоя выступает полимерная пленка или материал на основе высокопористых неорганических оксидов. Наиболее простым распространенным ТИПОМ И датчиков являются датчики сорбционновлажности импедансного типа. Преимуществом этих датчиков являются: высокая чувствительность; простота изготовления; компактность. Работа такого датчика основывается на зависимости

РАДИОЭЛЕКТРОНИКА

комплексного сопротивления сорбционного слоя от объема поглощенной им влаги. Постоянная времени датчика имеет значение: для датчика относительной влажности – 1-2 с; для датчика микровлажности – от 10 до 180 с. Путем термической обработки влажностного датчика удается снизить погрешность измерения до 2% [1].

Характеристики сорбционно-импедансных датчиков влажности зависят от сорбционного материала. В роли сорбционного слоя ранее использовали гигроскопичные соли: хлорид лития, фторид бериллия и др. Таким датчикам низкая стабильность, свойственны малая чувствительность и большая погрешность. В последнее время активно разрабатываются импедансные датчики С полимерными сорбентами на основе оксидов металлов, оксида графена, электропроводящих полимеров, полимеров с фуллереном и т.д., в том числе в тонкопленочном исполнении [2].

В [3] предложена конструкция тонкопленочного датчика влажности резистивного типа, в виде электропроводящих дорожек оксида графена на гибкой полимерной пленке, формируемых с помощью полупроводникового лазера из нанесенной на подложку и высушенной водной суспензии оксида графена, с выводами на основе токопроводящей пасты. Проводимость оксида графена с ростом уровня относительной влажности RH от 30 до 70% возрастает почти в 3 раза. При прогонке RH в обратном направлении наблюдается явление слабого гистерезиса проводимости. Такой тонкопленочный датчик не позволяет осуществлять одновременное измерение влажности и температуры и, как показано, проявляет явление слабого гистерезиса проводимости.

Для работы в широком диапазоне изменения влажности и температуры в [4,5] предложен датчик влажности, содержащий стеклянную подложку, на которую нанесена двухслойная мультиграфеновая пленка заданной формы и размеров, на краях которой размещены электрические контакты. Жесткая стеклянная подложка не позволяет размещать датчик на деформируемых поверхностях, датчик не может одновременно измерять влажность и температуру.

Для измерения температуры различных сред и объектов также активно разрабатываются гибкие датчики температуры различных видов: гибкие термосопротивления, гибкие термопары, термисторы, гибкие термохромные гибкие элементы и др. [6]. В качестве чувствительных материалов в таких датчиках широко применяют проводящие полимерные нанокомпозиты, на основе полимеров с проводящими углеродными наноматериалами (углеродное волокно, графен, фуллерены, пористый углерод, УНТ), а также металлические наночастицы. Электрическое сопротивление таких композитов критически объемной зависит OT доли проводящего наполнителя.

Нанокомпозитные термосопротивления имеют положительный температурный коэффициент, повышением поскольку С температуры проводящие цепочки ИЗ проводящих наполнителей разрушаются. Кроме того, объемное расширение полимерной матрицы приводит к уменьшению объемной доли проводящих наночастиц, что также приводит к увеличению электрического сопротивления проводящих композитов.

В [7] предложен проводящий композит для гибких термисторов с отрицательным температурным коэффициентом сопротивления на основе полимера ПММА, используемого в качестве связующего с добавлением многостенных УНТ (МУНТ). Эти датчики имеют высокие температурные коэффициенты, достигающие 0.0013°С⁻¹ при 30-42°С.

3. ЗАВИСИМОСТИ ЭЛЕКТРОПРОВОДНОСТИ ПОЛИМЕРНЫХ НАНОКОМПОЗИТОВ С УНТ ОТ ВЛАЖНОСТИ И ТЕМПЕРАТУРЫ

Исследованию зависимостей электропроводности полимерных нанокомпозитов с одностенными УНТ и МУНТ от влажности и температуры посвящено большое число статей [8].

На основе многочисленных исследований установлено [9], что зависимость электропроводности полимерных нанокомпозитов с УНТ от температуры в диапазоне температур примерно от -150° С до температуры T_{g} стеклования полимера (для поливинилового спирта, например, $T_{g} = 85^{\circ}$ С, для ППМА – 105°С) описывается формулой:

$$\sigma = A \exp\left(-\frac{T_1}{T + T_2}\right),\tag{1}$$

где *А*, *T*₁ и *T*₂ – некоторые параметры, определяемые свойствами полимера и УНТ.

Зависимость электропроводности ИЛИ сопротивления полимерных нанокомпозитных пленок от влажности имеет более сложный характер и не описывается единой формулой; эта зависимость объясняется абсорбционным механизмом значительной степени И в определяется структурой нанокомпозита. Вместе с тем эта зависимость при фиксированной температуре имеет регулярный характер воспроизводится с высокой точностью при повторных измерениях.

Одним И3 наиболее перспективных материалов органической электроники извысокой химической И термической стабильности и возможности получения пленок на его основе из водных растворов является PEDOT: PSS или поли (3,4-этилендиокситиофен) полистиролсульфонат [10-12]. В качестве примера на Рис. 1 приведены зависимости сопротивления пленки чистого PEDOT:PSS и пленки МУНТ/PEDOT:PSS от температуры при различном содержании МУНТ, а на Рис. 2 нормализованного зависимости изменения сопротивления от относительной влажности MYHT/PEDOT:PSS пленки С разным содержанием МУНТ при 50°С и 70°С [12].

Рис. 1. Зависимости сопротивления пленки чистого PEDOT:PSS (a) и пленки MYHT/PEDOT:PSS от температуры при различном содержании MWCNT (б) [12].

Рис. 2. Нормализованное изменение сопротивления в зависимости от относительной влажности пленки MУНТ/PEDOT:PSS в зависимости от содержания MУНТ при 50°C (a), при 70°C(б).

Особенностью представленных характеристик является немонотонный характер зависимости приращения сопротивления пленок от влажности.

В наших работах [13,14] на основе МУНТ, синтезированных MOCVD методом на УлГТУ, были экспериментальной установке получены декорированные наночастицами Fe₃O₄ магниточувствительные МУНТ (М-МУНТ). На основе таких М-МУНТ и поливинилового спирта (ПВС) в качестве матрицы получены нанокомпозитные полимерные пленки. Методика изготовления пленок подробно описана в [13].

Для измерения проводимости пленок образцы пленок размером 1×1 см приклеивались на стеклянную подложку, а на их рабочую поверхность наносились два прямоугольных медных контакта на расстоянии 0.5 мм друг

Рис. 3. Вольт-амперные характеристики пленки ПВС с концентрацией МУНТ 5% при разных значениях относительной влажности (RH) воздуха и комнатной температуре.

РАДИОЭЛЕКТРОНИКА

Рис. 4. Зависимость тока через пленку ПВС с концентрацией МУНТ 5% при напряжении 5 В от влажности; точки – эксперимент, линия – аппроксимация линейной функцией.

от друга. Для получения воздуха с заданной влажностью использовался набор колб с водно-глицериновым раствором определенной концентрации по ГОСТ 29244-91 (ИСО 483-88) [15].

На **Рис. 3** и **Рис. 4** приведены вольт-амперные характеристики одного из образцов пленки ПВС/М-МУНТ при различной относительной влажности воздуха.

Вольт-амперные характеристики другого образца пленки ПВС/М-МУНТ при относительной влажности (RH) воздуха 56% и различной температуре приведены на **Рис. 5**.

Рис. 5. Вольт-амперные характеристики нанокомпозитных пленок ПВС/М-МУНТ при относительной влажности воздуха 56% и различной температуре.

Как видно из представленных графиков, сопротивление пленок ПВС/М-МУНТ существенно (на несколько порядков) больше, чем у пленок МУНТ/PEDOT:PSS, но характер его температурных зависимостей совпадает: с ростом температуры сопротивление пленок обоих типов монотонно уменьшается. При этом, в отличие от пленок МУНТ/PEDOT:PSS, ПВС/М-МУНТ наблюдаются пленок V практически линейная зависимость логарифма тока при постоянном напряжении (то есть монотонно спадающая экспоненциальная зависимость сопротивления) от относительной влажности.

4. ДВУХПАРАМЕТРИЧЕСКИЙ ГИБКИЙ ДАТЧИК ВЛАЖНОСТИ И ТЕМПЕРАТУРЫ

На основе проведенного анализа зависимостей сопротивления полимерных нанокомпозитных пленок от влажности и температуры для обеспечения возможности одновременного измерения температуры И влажности [16] предложена структура гибкого в двухпараметрического датчика температуры и влажности (Рис. 6).

Датчик включает подложку 1, например, из силиконового эластомера, обладающего высокой эластичностью и стойкостью к действию воды, растворов солей и кислот. На поверхности подложки расположены два полимерных пленочных резистора 2 и 3 в виде двух полимерных пленок с УНТ, выполненных в виде прямоугольных полосок. Два края полосок электрически соединены тонкой металлической контактной площадкой 4, а на других краях полосок созданы две раздельные металлические контактные площадки 5 и 6. Полоски с

Рис. 6. Структура гибкого двухпараметрический датчика температуры и влажности.

Рис. 7. Схема электрическая включения датчика.

контактами образуют электрическую цепь из двух последовательно соединенных резисторов 2 и 3 (**Рис. 7**). При этом резистор 3 покрыт в атмосфере сухого воздуха влагонепроницаемым защитным материалом 7, например, лаком или компаундом. К металлическим контактным площадкам 4-6 контактной или ультразвуковой сваркой присоединены гибкие изолированные проводники.

При работе датчика электрическая цепь подключена к источнику тока 8. Падение напряжений U_1 и U_2 раздельно на каждом пленочном резисторе измеряется вольтметрами (на Рис. 6 V_1 и V_2) или аналого-цифровым преобразователем микроконтроллера.

Ha электрической 7) схеме (Рис. сопротивление R₁ соответствует незащищенному пленочному резистору 2, а сопротивление соответствует пленочному R резистору 3, покрытому защитным материалом, его электрическое сопротивление зависит только от температуры и не зависит от влажности. Соответственно, сопротивление R, пленочного резистора 3, покрытого защитным материалом, будет зависеть только от температуры, и эту зависимость можно записать в виде

$$R_{2}(T) = R_{20}(T_{0}, 0) \exp\left(\frac{T_{1}}{T + T_{2}}\right),$$
(2)

где $R_{20}(T_0,0)$ — значение сопротивления пленочного резистора 3 при некоторой заданной температуре T_0 калибровки датчика (например, при комнатной температуре $T_0 = 20$ °C) и нулевой влажности; параметры T_1 и T_2 определяются при предварительной калибровке датчика путем дополнительного измерения $R_2(T)$ еще при двух известных значениях температуры калибровки T_{κ_1} и T_{κ_2} и решения полученной системы уравнений.

Зависимость электрического сопротивления R_1 пленочного резистора 2 от температуры T и относительной влажности Ψ окружающего воздуха запишем в общем виде:

$$R_{1} = R_{10}(T_{0}, 0)F(T, \Psi), \qquad (3)$$

где $R_{10}(T_0,0)$ – значение сопротивления пленочного резистора 2 при температуре T_0 и нулевой влажности; а функция $F(T,\Psi)$ определяется при предварительной калибровке датчика в рабочем диапазоне измеряемых величин и задается либо в виде формулы, либо в виде таблицы.

При размещении датчика на контролируемом объекте и(или) в контролируемой среде с неизвестной температурой T_x , и влажностью Ψ_x и при пропускании через пленочные резисторы тока I_0 по результатам измерения падения напряжений $U_{1\text{meas.}}$ и $U_{2\text{meas.}}$ можно определить (рассчитать) значения искомых величин. Напряжение $U_{2\text{meas.}}$ на резисторе R_2 , зависимое только от измеряемой температуры T_x , согласно (2) будет равно

$$U_{2meas.} = I_0 R_{20}(T_0, 0) \exp\left(\frac{T_2}{T + T_2}\right), \tag{4}$$

а на резисторе R₁, зависимое и от температуры, и от влажности, соответственно будет равно

$$U_{1\text{meas.}} = I_0 R_{10}(T_0, 0) F(T_x, \Psi_x).$$
(5)

Из (2) получаем выражение для определения значения $T_{\rm x}$

$$T_{\rm x} = T_1 [\ln(U_{\rm 2meas}/I_0R_{20})]^{-1} - T_2.$$
(6)

При известном значении T_x значение Ψ_x находится из решения (расчетным путем или из таблицы) уравнения

$$F(T_x, \Psi_x) = \frac{I_0 R_{10}(T_0, 0)}{U_{1meas.}}.$$
(7)

Таким образом, измеряемые параметры датчика: падение напряжения U₁ на пленочном резисторе R₁ и U₂ на пленочном резисторе R₂, позволяют осуществить одновременное определение текущей температуры объекта, с которым совмещен, нанесен, приклеен гибкий пленочный датчик, и определение влажности окружающей объект среды.

5. ВЫВОДЫ

На основе проведенного анализа известных зависимостей сопротивления полимерных нанокомпозитных пленок от влажности И температуры для обеспечения возможности одновременного измерения температуры влажности предложена структура гибкого температуры двухпараметрического датчика и влажности. Конструкция гибкого датчика позволяет использовать его на неровных и деформируемых поверхностях без разрушения чувствительного элемента И потери работоспособности. Датчик характеризуется простотой изготовления С применением доступных материалов, технологических приемов и оборудования.

ЛИТЕРАТУРА

- Датчики влажности: https://www.eksis.ru/ materials/articles/relative-humidity-sensors.php (дата обращения 11.11.2022).
- 2. Муллагалиев ИН, Сафаргалин ИН, Салихов РБ. Химические датчики на основе тонких полимерных пленок. Электротехнические и информационные комплексы и системы, 2017, 13(3):86-91.
- Винокуров ПВ, Филиппов ИМ, Алексеев АИ, Капитонов АН, Смагулова СА. Способ изготовления тонкопленочного датчика влажности. Патент 2682259 РФ G01N 27/00. Заявл. 2018120326 01.06.2018, опубл. 18.03.2019. Бюл. № 8.
- Федоров ВН, Попов ВИ, Смагулова СА. Устройство датчика влажности. Патент 160838 РФ G01N 27/04. Заявл. 2014145451, 13.11.2014. Опубл. 10.04.2016. Бюл. № 10.
- Ruping Liu, Liang He, Meijuan Cao, Zhicheng Sun, Ruiqi Zhu and Ye Li. Flexible Temperature Sensors. REVIEW article. *Front. Chem.*, 2021, 9:539678, doi: 10.3389/fchem.2021.539678.
- Wu L, Qian WJ and Peng J. Screen-printed Flexible Temperature Sensor Based on FG/ CNT/PDMS Composite with Constant TCR. *Mater. Elect.*, 2019, 30(10):9593-9601.
- Yao Yao, Xiangdong Chen, Huihui Guo, Zuquan Wu, Xiaoyu Li. Humidity sensing behaviors of graphene oxide-silicon bi-layer flexible

structure. *Sensors and Actuators B-chemical*, 2012, 161:1053-1058.

- Kanoun O, Ramalingame R, Al-Hamry A, Bouhamed A, Bautista-Quijano JR and Rejandran D. Potential of carbonaceous materials for the realization of high performance sensors. *Proc.* 17th International Multi-Conference on Systems, Signals & Devices (SSD), 2020, pp. 1-6; doi: 10.1109/ SSD49366.2020.9364173.
- Елецкий АВ, Книжник АА, Потапкин БВ, Кенни ХМ. Электрические характеристики полимерных композитов, содержащих углеродныенанотрубки. *УФН*,2015,185(3):225-270; doi: 10.3367/UFNr.0185.201503a.0225.
- 10. Решетилов АН, Китова АЕ, Тарасов СЕ, Плеханова ЮВ, Быков АГ, Сандраморти АК, Кузнецова ИЕ, Колесов ВВ, Готовцев ПМ. Высокопроводящий полимер ПЭДОТ:ПСС биомедицинских _ применение в биоэлектрохимических И системах. РЭНСИТ: Радиоэлектроника. Наносистемы. Информационные технологии, 2020, 12(4):471-482. DOI: 10.17725/rensit.2020.12.471.
- 11. Ненашев ГВ, Истомина МС, Щербаков ИП, Швидченко АВ, Петров ВН, Алешин АН. Композитные пленки на основе углеродных квантовых точек в матрице проводящего полимера PEDOT:PSS. Физика твердого тела, 2021, 63(8):1183-1188; doi: 10.21883/ FTT.2021.08.51176.090.
- 12. Benchirouf A, Palaniyappan S, Ramalingame R, Raghunandan P, Jagemann T, Müller Chr, Hietschold M, Kanoun O. Electrical properties of multi-walled carbon nanotubes/PEDOT:PSS nanocomposites thin films under temperature and humidity effects. *Sensors and Actuators B-chemical*, 2016, 224:344-350.
- 13. Vasin SV, Nizametdinov AM, Sergeev VA, and Efimov MS. Structure and electrical conductivity of polyvinyl alcohol films with multi-walled carbon nanotubes cured in a magnetic field. *RENSIT: Radioelektronika. Nanosistemy. Informacionnye Tehnologii*, 2021, 13(4):457-462e. DOI: 10.17725/rensit.2021.13.457.
- 14. Vasin SV, Efimov MS, Nizametdinov AM and Sergeev VA. Influence of the magnetic field on the formation and properties of

polyvinyl alcohol – multi-walled carbon nanotube nanocomposites. *Journal of Physics: Conference Series*, 2021, 2103(1):012108, doi: 10.1088/1742-6596/2103/1/012108.

- 15. ГОСТ 29244-91 (ИСО 483-88) Пластмассы. Небольшие контейнеры для кондиционирования и испытания с использованием водных растворов для поддержания постоянного значения относительной влажности. М., Росстандарт, 1992.
- Сергеев ВА, Васин СВ, Ефимов МС. Двухпараметрический гибкий датчик влажности и температуры. Патент 214243 РФ G01N 27/04. Заявл. 2022117039, 23.06.2022. Опубл. 18.10.2022. Бюлл. № 29.

Сергеев Вячеслав Андреевич

д.т.н., профессор, член-корр. РАЕН УФИРЭ им. В.А. Котельникова РАН **Ульяновск 432071, Россия** sva@ulstu.ru Васин Сергей Владимирович *к.ф.-м.н.*

х.*ф.у.м.* УФИРЭ им. В.А. Котельникова РАН **Ульяновск 432071, Россия** vs0902@mail.ru

Ефимов Михаил Сергеевич аспирант Ульяновский гос. техн. университет Ульяновск 432071, Россия efimovmix@mail.ru.