Том 6, №1, 2014
РусскийEnglish

НАНОСИСТЕМЫ



МЕТОДЫ СОЗДАНИЯ И ИССЛЕДОВАНИЯ МОНОМОЛЕКУЛЯРНЫХ ТРАНЗИСТОРОВ
Солдатов Е.С., Сапков И.В., Степанов А.С.
Московский государственный университет им. М.В. Ломоносова, физический факультет, http://www.phys.msu.ru
119991 Москва, Российская Федерация

Поступила в редакцию 01.12.2011
Прогресс в области элементной базы современной электроники выводит элементы микросхемы на размеры в единицы нанометров, что предполагает изменение самих физических принципов работы микроэлектронных устройств в связи со значимостью возникающих на таких размерах квантовых эффектов. Развитие электроники привело к возникновению гибридных устройств со слоем молекулярных компонент на базе кремниевой технологии КМОП. Основная компонента здесь, рабочий элемент – квантовая точка, наночастица между проводящими электродами, мономолекулярный одноэлектронный транзистор. Создание транзистора на базе одиночной молекулы делится на два этапа – создание проводящих электродов с зазором порядка единиц нанометров и встраивание молекулы в такой зазор. В настоящей работе предлагается обзор возможных способов решения этой проблемы. Рассматриваются три группы методов создания электродов для молекулярного транзистора. В группе методов с возможностью контроля ширины зазора отмечены демонстрационные, лабораторные методы использования иглы сканирующего туннельного микроскопа в качестве одного из электродов и метод контролируемой механической деформации подложки литографированного нанопровода до разлома электродов с образованием нанозазора. Во второй группе – методы локального разрушения нанопровода на основе электромиграционного (под действием тока высокой плотности) разрыва, либо травления электрохимического или ионным пучком, либо абляции перемычек-нанопроводов, созданных электронно-лучевой литографией или напылением, в т.ч. теневым. К третьей группе – методы заращивания имеющихся зазоров до наноразмеров электрохимическим осаждением, либо дополнительным напылением. Рассматриваются, наконец, методы иммобилизации единичного нанобъекта в нанозазор – от неконтролируемого простого осаждения молекул из раствора с последующим высушиванием до электротрэппинга одиночных молекул и химической самосборки наночастиц в зазоре с контролем вольт-амперной характеристики контакта.

Ключевые слова: наноэлектроника, мономолекулярный одноэлектронный транзистор, электроды с нанозазором, одиночные наночастицы, литография, электрохимия.

УДК 621.382; 535.312

Библиография – 140 ссылок.

РЭНСИТ, 2011, 3(2):38-58
ЛИТЕРАТУРА
  • Moore GE. Cramming more components onto integrated circuits. Electronics, 1965, 39(8):114-117.
  • Demkov AA, Navrotsky A, (eds.). Materials Fundamentals of Gate Dielectrics. Dordrecht, Springer, 2005.
  • International Technology Roadmap for Semiconductors (ITRS), 2010.
  • Tsu R. Challenges in nanoelectronics. Nanotechnology, 2001, 12:625; Mantooth BA, Weiss PS. Proceedings of the IEEE, 2003, 91:1785.
  • Petty MC. Molecular electronics: from principles to practice. Chichester, Wiley-Interscience, 2007.
  • Aviram A, Ratner MA. Molecular Rectifiers. Chem. Phys. Lett., 1974, 29:277-283.
  • Metzger RM. Electrical Rectification by a Molecule: The Advent of Unimolecular Electronic Devices. Acc. Chem. Res., 1999, 32:950.
  • James DK, Tour JM. Organic Synthesis and Device Testing for Molecular Electronics. Aldrichimica Acta, 2006, 39:47-56.
  • Likharev KK. Electronics below 10 nm. In: Nano and Giga Challenges in Microelectronics. Greer J. (ed.). Amsterdam, Elsevier, 2003, 27–68.
  • Korkin A, Rosei F. (eds.). Nanoelectronics and Photonics. New York, Springer, 2008.
  • Stadler R, Forshaw M. The performance of hybrid-molecular architectures with current CMOS technology as a reference. Physica E: Low-dimensional Systems and Nanostructures , 2002, 13(2-4):930-933.
  • Book chapter “Challenges and breakthroughs in recent research on self-assembly”. Sci. Technol. Adv. Mater., 2007, 9:014109.
  • Ercken M. et al. Challenges in using optical lithography for the building of a 22 nm node 6T-SRAM cell. Microelectronic Engineering, 2010, 87(5-8):993-996.
  • Osorio EA, Bjornholm T, Lehn JM, Ruben M, van der Zant HSJ. Single-molecule transport in three-terminal devices. J. Phys.: Condens. Matter, 2008, 20:374121-374135.
  • Likharev KK. Correlated discrete transfer of single electrons in ultrasmall tunnel junctions. IBM J. Res. Develop., 1988, 32:144.
  • Kouwenhoven L. Single-Molecule Transistors. Science, 1997, 275(5308):1896-1897.
  • Chen F, He J, Nuckolls C, Roberts T, Klare JE, Lindsay S. A molecular switch based on potential-induced changes of oxidation state. Nano Lett., 2005, 5:503.
  • Neel N, Kroger J, Limot L, Frederiksen T, Brandbyge M, Berndt R. Controlled contact to a C60 molecule. Phys.Rev. Lett., 2007, 98:065502.
  • Yasutake Y, Shi Z, Okazaki T, Shinohara H, Majima Y. Single molecular orientation switching of an endohedral metallofullerene. Nano Lett., 2005, 5:1057.
  • Osorio E, O’Neill K, Wegewijs M, Stuhr-Hansen N, Paaske J, Bjornholm T, van der Zant HSJ. Electronic excitations of a single molecule contacted in a three-termina configuration. Nano Lett., 2007, 7:3336.
  • Lortscher E, Ciszek J, Tour J, Riel H. Reversible and controllable switching of a single-molecule junction. Small, 2006, 2:973.
  • Pan S et al. Controlling electronic states and transport properties at the level of single molecules. Adv. Mater., 2010, 22:1967.
  • Katsonis N, Kudernac T, Walko M, van der Molen SJ, van Wees BJ, Feringa BL. Reversible conductance switching of single diarylethenes on a gold surface. Adv., Mater., 2006, 18:1397.
  • Chen F, Li X, Hihath J, Huang Z, Tao N. Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine, and carboxylic-acid terminated molecules. J. Am. Chem. Soc., 2006, 128:15874.
  • Martin C, Ding D, Sorensen JK, Bjornholm T, van Ruitenbeek JM, van der Zant HSJ. Fullerene-based anchoring groups for molecular electronics. J. Am. Chem. Soc, 2008, 130:13198.
  • Kamenetska M et al. Formation and evolution of single-molecule junctions. Phys. Rev. Lett., 2009, 102:126803.
  • Schiessling J, Grigoriev A, Fasel R, Ahuja R, Bruhwiler PA. Interplay of covalent bonding and correlation effects at molecule–metal contacts. Chem. Phys.Lett., 2009, 478:191.
  • Lennartz MC, Atodiresei N, Muller-Meskamp L, Karthauser S, Waser R, Blugel S. Cu-adatom-mediated bonding in close-packed benzoate/Cu(110)-systems. Langmuir, 2009, 25:856.
  • Bellec A, Ample F, Riedel D, Dujardin G, Joachim C. Imaging molecular orbitals by scanning tunneling microscopy on a passivated semiconductor. Nano Lett., 2009, 9:144.
  • Brandbyge M, Mozos J-L, Ordejon P, Taylor J, Stokbro K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B, 2002, 65:165401.
  • Rocha AR, Garcia-Suarez VM, Bailey S, Lambert C, Ferrer J, Sanvito S. Spin and molecular electronics in atomically generated orbital landscapes. Phys. Rev. B, 2006, 73:085414.
  • Prodan E, Car R. Tunneling conductance of amine-linked alkyl chains. Nano Lett., 2008, 8:1771.
  • Stadler R, Geskin V, Cornil J. Towards a theoretical description of molecular junctions in the Coulomb blockade regime based on density functional theory. Phys.Rev. B, 2008, 78:113402.
  • Toher C, Rungger I, Sanvito S. Simulating STM transport in alkanes from first principles. Phys. Rev. B, 2009, 79:205427.
  • Tkatchenko A, Romaner L, Hofmann OT, Zojer E, Ambrosch-Draxl C, Scheffler M. Van der Waals interactions between organic adsorbates and at organic/inorganic interfaces. MRS Bull., 2010, 35:435.
  • Atodiresei N, Caciuc V, Lazic P, Blugel S. Chemical versus van der Waals interaction: the role of the heteroatom in the flat absorption of aromatic molecules C6H6, C5NH5 and C4N2H4 on the Cu(110) surface. Phys. Rev. Lett., 2009, 102:136809.
  • Galperin M, Ratner MA, Nitzan A, Troisi A. Nuclear coupling and polarization in molecular transport junctions: beyond tunneling to function. Science, 2008, 319:1056.
  • Heimel G, Romaner L, Zojer E, Bredas J-L. Toward control of the metal–organic interfacial electronic structure in molecular electronics: a first-principles study on self-assembled monolayers of p-conjugated molecules on noble metals. Nano Lett., 2007, 7:932.
  • Awshalom DD, Flatte MM. Challenges for semiconductor spintronics. Nature Phys., 2007, 3:153–159.
  • Bogani L, Wernsdorfer W. Molecular spintronics using single-molecule magnets. Nature Materials, 2008, 7:179-186.
  • Rocha AR et al. Towards molecular spintronics. Nature Materials, 2005, 4:335-339.
  • Iancu V, Deshpande A, Hla S-W. Manipulating Kondo Temperature via Single Molecule Switching. Nano Lett., 2006, 6(4):820–823.
  • Zyazin AS, van den Berg JWG, Osorio EA et al. Electric Field Controlled Magnetic Anisotropy in a Single Molecule. Nano Lett., 2010, 10(9):3307-3311.
  • Marquardt CW et al. Electroluminescence from a single nanotube–molecule–nanotube junction. Nature Nanotechnology, 2010, 5:863–867.
  • Seldenthuis JS, van der Zant HSJ, Ratner MA, Thijssen JM. Electroluminescence spectra in weakly coupled single-molecule junctions. Phys. Rev. B, 2010, 81:205430.
  • Pan C, Fang Y, Wu H et al. Generating Electricity from Biofluid with a Nanowire-Based Biofuel Cell for Self-Powered Nanodevices. Adv. Mater., 2010, 22:1-5.
  • Selzer Y, Allara D. Single-molecule electical junctions. Annu. Rev. Phys. Chem., 2006, 57:593.
  • Tao NJ. Electron transport in molecular junctions. Nature Nanotechnology, 2006, 1:173-181.
  • Lindsay SM, Ratner MA. Molecular Transport Junctions: Clearing Mists. Adv. Mater., 2007, 19:23.
  • Ulgut B, Abruna HD. ChemInform Abstract: Electron Transfer Through Molecules and Assemblies at Electrode Surfaces. Chem. Rev., 2008, 108:2721.
  • McCreery RL, Bergren AJ. Progress with Molecular Electronic Junctions: Meeting Experimental Challenges in Design and Fabrication. Adv. Mater., 2009, 21:4303-4322.
  • Andergassen S et al. Charge transport through single molecules, quantum dots and quantum wires. Nanotechnology, 2010, 21:272001.
  • Hofer WA, Fisher AJ, Lopinski GP, Wolkow RA. Electronic structure and STM images of self-assembled styrene lines on a Si(100) surface. Chem. Phys. Lett., 2002, 365:129.
  • Lopinski GP, Moffat DJ, Wayner DDM, Zgierski MZ, Wolkow RA. Asymmetric Induction at a Silicon Surface. J. Am. Chem. Soc., 1999, 121:4532.
  • Pitters JL, Dogel I, DiLabio GA, Wolkow RA. Linear Nanostructure Formation of Aldehydes by Self-Directed Growth on Hydrogen-Terminated Silicon(100). J. Phys. Chem. B, 2006, 110:2159.
  • Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruna HD, McEuen PL, Ralph DC. Coulomb blockade and the Kondo effect in single-atom transistors. Nature, 2002, 417:722.
  • Piva PG, DiLabio GA, Pitters JL, Zikovsky J, Rezeq MD, Dogel S, Hofer WA, Wolkow RA. Nature, 2005, 435:658.
  • Dickie AJ, Wolkow RA. Metal-organic-silicon nanoscale contacts. Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 77:115305.
  • Nazin GV, Qiu XH, Ho W. Visualization and Spectroscopy of a Metal-Molecule-Metal Bridge. Science, 2003, 302:77.
  • Patitsas SN, Lopinski GP, Hul’ko O, Moffatt DJ, Wolkow RA. Current-induced organic molecule–silicon bond breaking: consequences for molecular devices. Surf. Sci., 2000, 457:L425.
  • Moore AM, Dameron AA, Mantooth BA, Smith RK, Fuchs DJ, Ciszek JW, Maya F, Yao Y, Tour JM, Weiss OS. Molecular Engineering and Measurements To Test Hypothesized Mechanisms in Single Molecule Conductance Switching. J. Am. Chem. Soc., 2006, 128:1959.
  • Bumm LA, Arnold JJ, Cygan MT, Dunbar TD, Burgin TP, Jones L, Allara DL, Tour JM, Weiss PS. Are Single Molecular Wires Conducting? Science, 1996, 271:1705.
  • Donhauser ZJ, Mantooth BA, Kelly KF, Bumm LA, Monnell JD, Stapleton JJ, Price DW, Rawlett AM, Allara DL, Tour JM, Weiss PS. Conductance Switching in Single Molecules through Conformational Changes. Science, 2001, 292:2303.
  • Scharf J, Strehblow H-H, Zeysing B, Terfort A. Electrochemical and surface analytical studies of self-assembled monolayers of three aromatic thiols on gold electrodes. J. Solid State Electrochem., 2001, 5:396.
  • Laursen BW, Norgaard K, Reitzel N, Simonsen JB, Nielsen CB, Als-Nielsen J, Bjornholm T, Solling TI, Nielsen MM, Bunk O, Kjaer K, Tchebotareva N, Watson MD, MuЁllen K, Piris J. Macroscopic Alignment of Graphene Stacks by Langmuir−Blodgett Deposition of Amphiphilic Hexabenzocoronenes. Langmuir, 2004, 20:4139.
  • Danilov AV, Kubatkin SE, Kafanov SG, Flensberg K, Bjornholm T. Electron Transfer Dynamics of Bistable Single-Molecule Junctions. Nano Lett., 2006, 6:2184.
  • Danilov A, Kubatkin S, Kafanov S, Hedegard P, Stuhr-Hansen N, Moth-Poulsen K, Bjornholm T. Electronic Transport in Single Molecule Junctions: Control of the Molecule-Electrode Coupling through Intramolecular Tunneling Barriers. Nano Lett., 2008, 8(1):1-5.
  • He J, Sankey O, Lee M, Tao N, Li X, Lindsay S. Measuring single molecule conductance with break junctions. Faraday Discuss., 2006, 131:145-154.
  • Hines T et al. Transition from Tunneling to Hopping in Single Molecular Junctions by Measuring Length and Temperature Dependence. J. Am. Chem. Soc., 2010, 132(33):11658–11664.
  • Moreland J, Ekin JW. Electron, Tunneling Experiments Using Nb-Sn 'Break' Junctions. J. Appl. Phys., 1985, 58:3888.
  • Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM. Conductance of a Molecular Junction. Science, 1997, 278:252.
  • Muller CJ, Vleeming BJ, Reed MA, Lamba JJS, Hara R, Jones L, Tour JM. Atomic Probes: a Search for Conduction Through a Single Molecule. Nanotechnology, 1996, 7:409.
  • Kergueris C, Bourgoin JP, Palacin S, Esteve D, Urbina C, Magoga M, Joachim C. Conductance of molecular wires connected or bonded in parallel. Phys. Rev. B, 1999, 59:12505.
  • Krans JM, Muller CJ, Yanson IK, Govaert TCM, Hesper R, van Ruitenbeek JM. One-atom point contacts. Phys. Rev. B, 1993, 48:14721.
  • Van Ruitenbeek JM, Alvarez A, Pineyro I, Grahmann C, Joyez P, Devoret MH, Esteve D, Urbina C. Adjustable nanofabricated atomic size contacts. Rev. Sci. Instrum., 1996, 67:108.
  • Van Ruitenbeek J, Scheer E, Weber HB. In: Lecture Notes in Physics: Introducing Molecular Electronics, Vol. 680 (Eds: Cuniberti G, Fagas G, Richter K), Heidelberg, Springer, 2005, pp. 253–274.
  • Reichert J, Ochs R, Beckmann D, Weber HB, Mayor M, Von Lohneysen H. Driving Current through Single Organic Molecules. Phys. Rev. Lett., 2002, 88:176804.
  • Weber HB, Reichert J, Weigend F, Ochs R, Beckmann D, Mayor M, Ahlrichs R, von Lohneysen H. Electronic transport through single conjugated molecules. Chem. Phys., 2002, 281:113.
  • Reichert J, Weber HB, Mayor M, von Lohneysen H. Low-temperature conductance measurements on single molecules. Appl. Phys. Lett., 2003, 82:4137.
  • Djukic D, van Ruitenbeek JM. Shot Noise Measurements on a Single Molecule. Nano Lett., 2006, 6:789.
  • Lortscher E, Ciszek JW, Tour J, Riel H. Reversible and Controllable Switching of a Single-Molecule Junction. Small, 2006, 2:973.
  • Tian JH, Liu B, Li XL, Yang ZL, Ren B, Wu ST, Tao NJ, Tian ZQ. J. Am. Chem. Soc., 2006, 128(14):748.
  • Ho PS, Kwok T. Electromigration in metals. Rep. Prog. Phys., 1989, 52:301.
  • Park H, Lim AKL, Alivisatos AP, Park J, McEuen PL. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett., 1999, 75:301.
  • Strachan DR, Smith DE, Johnston DE, Park TH, Therien MJ, Bonnell DA, Johnson AT. Controlled fabrication of nanogaps in ambient environment for molecular electronics. Appl. Phys. Lett., 2005, 86:043109.
  • Mahapatro AK, Ying J, Ren T, Janes DB. Electronic Transport through Ruthenium-Based Redox-Active Molecules in Metal−Molecule−Metal Nanogap Junctions. Nano Lett., 2008, 8:2131.
  • Ghosh S, Halimun H, Mahapatro AK, Choi J, Lodha S, Janes D. Device structure for electronic transport through individual molecules using nanoelectrodes. Appl. Phys. Lett., 2005, 87:233509.
  • Lambert MF, Goffman MF, Bourgoin JP, Hesto P. Fabrication and characterization of sub-3 nm gaps for single-cluster and single-molecule experiments. Nanotechnology, 2003, 14:772.
  • Bolotin KI, Kuemmeth F, Pasupathy AN, Ralph DC. From Ballistic Transport to Tunneling in Electromigrated Ferromagnetic Breakjunctions. Nano Lett., 2006, 6:123.
  • Park H, Lim AKL, Alivisatos AP. Fabrication of metallic electrodes with nanometer separation with electromigration. Appl. Phys. Letters, 1999, 35(2):301.
  • Prins F, Hayashi T, de Vos van Steenwijk BJA, Gao B, Osorio EA, Muraki K, van der Zant HSJ. Room-temperature stability of Pt nanogaps formed by self-breaking. Appl. Phys. Lett., 2009, 94:123108.
  • De Los Santos Valladares L, Felix LL, Dominguez AB et al. Controlled electroplating and electromigration in nickel electrodes for nanogap formation. Nanotechnology, 2010, 21:445304.
  • Dorn A, Huang H, Bawendi MG. Electroluminescence from Nanocrystals in an Electromigrated Gap Composed of Two Different Metals. Nano. Lett., 2008, 8(5):1347-1351.
  • Ward DR et al. Electronic and optical properties of electromigrated molecular junctions. J. Phys.: Condens. Matter, 2008, 20:374118.
  • Schull G, Frederiksen T, Arnau A, Sбnchez-Portal D, Berndt R. Atomic-scale engineering of electrodes for single-molecule contacts. Nature Nanotechnology, 2011, 6:23–27.
  • Moth-Poulsen K, Bjшrnholm T. Molecular electronics with single molecules in solid-state devices. Nature Nanotechnology, 2009, 4:551-556.
  • McCreery RL, Bergren AJ. Progress with Molecular Electronic Junctions: Meeting Experimental Challenges in Design and Fabrication. Adv. Mat., 2009, 21(43):4303-4322.
  • Strachan DR, Johnston DE, Guiton BS, Datta SS, Davies PK, Bonnell DA, Johnson ATC. Real-Time TEM Imaging of the Formation of Crystalline Nanoscale Gaps. Phys. Rev. Lett., 2008, 100:056805.
  • Mangin A, Anthore A, Della Rocca ML, Boulat E, Lafarge P. Reduced work functions in gold electromigrated nanogaps. Phys. Rev. B, 2009, 80:235432.
  • Fischbein MD, Drndic M. Sub-10 nm Device Fabrication in a Transmission Electron Microscope. Nano Lett., 2007, 7(5):1329-1337.
  • Nagase T, Kubota T, Mashiko S. Fabrication of nano-gap electrodes for measuring electrical properties of organic molecules using a focused ion beam. Thin Solid Films, 2003, 438-439:374-377.
  • Blom T, Welch K, Strшmme M, Coronel E, Leifer K. Fabrication and characterization of highly reproducible, high resistance nanogaps made by focused ion beam milling.Nanotechnology, 2007, 18:285301.
  • Morpurgo AF, Marcus CM, Robinson DB. Controlled fabrication of metallic electrodes with atomic separation. Appl. Phys. Lett., 1999, 74:2084.
  • Kervennic YV, van der Zant HSJ, Morpurgo AF, Gurevich L, Kouwenhoven LP. Nanometer-spaced electrodes with calibrated separation. Appl. Phys. Lett., 2002, 80:321.
  • Boussaad S, Tao NJ. Atom-size gaps and contacts between electrodes fabricated with a self-terminated electrochemical method. Appl. Phys. Lett., 2002, 80:2398.
  • Xiang J, Liu B, Wu S-T, Ren B, Yang F-Z, Mao B-W, Chow YuL, Tian Zh-O. A Controllable Electrochemical Fabrication of Metallic Electrodes with a Nanometer/Angstrom-Sized Gap Using an Electric Double Layer as Feedback. Angew. Chem. Int. Ed., 2005, 44:1265.
  • Sapkov IV, Soldatov ES, Elensky VG. Method of creation of monomolecular transistor with overhanging electrodes, SPIE Proceedings, Vol. 7025, Micro- and Nanoelectronics, 2007.
  • Bezryadin A, Dekker C, Schmid G. Appl. Phys. Lett., 1997, 71:1273.
  • Steinmann P, Weaver JMR, J. Vac. Sci. and Technol. B, 2004, 22:3178.
  • Klein DL, Roth R, Lim AKL, Alivisatos AP, P.L. McEuen PL. Nature, 1997, 389:699.
  • Persson SHM, Olofsson L, Gunnarson L. Appl. Phys. Lett., 1999, 74:2546.
  • Kubatkin SE, Danilov AV, Olin H, T. Claeson T. Phys. Rev. Lett., 2000, 84:5836.
  • Nagase T, Kubota T, Mashiko S. Thin Solid Films, 2003, 438-439:374.
  • Ho PS, Kwok T. Rep. Prog. Phys., 1989, 52:301.
  • Kervennic YV, Vanmaekelbergh D, Kouwenhoven LP, van der Zant HSJ. Appl. Phys. Lett., 2003, 83:3782.
  • McCarty GS. Nano Lett., 2004, 4:1391.
  • Negishi R, Hasegawa T, Terabe K, Aono M, Ebihara T, Tanaka H, Ogawa T. Appl. Phys. Lett., 2006, 88:223111.
  • Steinmann P, Weaver JMR. J. Vac. Sci. and Technol. B, 2004, 22:3178.
  • Fendler JH, Meldrum FC. Adv. Mater., 1995, 7:607.
  • Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM. Nature, 1997, 278:253.
  • Trouwborst ML, van der Molen SJ, van Wees BJ. J. Appl. Phys., 2006, 99:114316.
  • Strachan DR, Smith DE, Johnston DE, Park T-H, Therien MJ, Bonnell DA, Johnson AT. Appl. Phys. Lett., 86, 043109 (2005).
  • Yu LH, Natelson D. The Condo effect in C60 single-molecule transistors. Nano Lett., 2004, 4:79 http://arxiv.org/abs/cond-mat/0310625.
  • Liang W, Shores MP, Bockrath M, Long JR, Park H. Nature, 2002, 417:728.
  • Xiang J, Liu B, Wu S-T, Ren B, Yang F-Z, Mao B-W, Chow YuL, Tian Zh-Q. Angew. Chem. Int. Ed., 2005, 44:1265.
  • Дамаскин ББ, Петрий ОА, Цирлина ГА. Электрохимия. М., Химия: КолосС, 2006, с. 11.
  • Ландау ЛД, Лифшиц ЕМ. Статистическая физика. Ч.1. М., Наука, 1976, с. 292.
  • Дамаскин ББ, Петрий ОА, Цирлина ГА. Электрохимия. М., Химия: КолосС, 2006, с.361.
  • Koetz ER, Neff H, Mueller K. J. Electroanal. Chem., 1986, 215:331.
  • Fendler JH. Chemical Self-assembly for Electronic Applications. Chemistry of Materials, 2001, 13(10):3196-3210.
  • Hiramutsu H, Osterloh F. Chem.Mater., 2004, 16:2509-2511.
  • Reichert J, Ochs R, Beckmann D, Weber HB, Mayor M, von Loehneysen H. Driving Current through Single Organic Molecules. Phys. Rev. Lett., 2002, 88(17):176804.
  • Zhou C, Muller CJ, Deshpande MR, Sleight JW, Reed MA. Appl. Phys. Lett., 1995, 67:1161.
  • Dulic D, van der Molen SJ, Kudernac T, Jonkman HT, de Jong JJD, Bowden TN, van Esch J, Feringa BL, van Wees BJ. Phys. Rev. Lett., 2003, 91:207402.
  • Subramanian KRV, Saifullah MSM, Tapley E, Kang D-J, Welland ME, Butler M. Nanotechnology, 2004, 15:158–62.
  • Liu K, Avouris Ph, Bucchignano J, Martel R, Sun S. Appl. Phys. Lett., 2002, 80:865–7.
  • Morpurgo AF, Marcus CM, Robinson DB. Appl. Phys. Lett., 1999, 74:2084.
  • Kervennic YV, van der Zant HSJ, Morpurgo AF, Gurevich L, Kouwenhoven LP. Appl. Phys. Lett., 2002, 80:321.
  • Fischbein MD, Drndicґ M. Sub-10 nm device fabrication in a transmission electron microscope. Nano Lett., 2007, 7(5):1329-1337.
  • Blom T, Welch K, Strшmme M, Coronel E, Leifer K. Fabrication and characterization of highly reproducible, high resistance nanogaps made by focused ion beam milling. Nanotechnology, 2007, 18(28):285301.


Полнотекстовая электронная версия статьи – на вебсайте http://elibrary.ru