Том 7, №1, 2015
РусскийEnglish

РАДИОЭЛЕКТРОНИКА



ТОНКОПЛЕНОЧНЫЕ КРЕМНИЕВЫЕ СОЛНЕЧНЫЕ ЭЛЕМЕНТЫ НА ГИБКИХ ПОДЛОЖКАХ

Казанский А. Г.


Московский государственный университет им. М.В. Ломоносова, физический факультет, http://www.phys.msu.ru
119991 Москва, Российская Федерация
kazanski@phys.msu.ru

Поступила в редакцию 25.02.2015


Аннотация. Успехи в разработке и создании тонкопленочных солнечных элементов привели к развитию целого направления в фотовольтаике – фотовольтаике «гибких» солнечных батарей, т.е. тонкопленочных солнечных батарей, сформированных на гибких подложках. Допустимость изменения формы данных солнечных батарей открывает новые возможности для их применения, в частности, использование для питания мобильных, портативных электронных устройств. Подобные солнечные батареи могут быть закреплены на предметах, имеющих сложную, негладкую поверхность, в том числе и на одежде. Помимо этого, относительная простота технологического процесса создания подобных солнечных батарей, малые энергозатраты и дешевизна используемых гибких подложек существенно снижает стоимость их производства. Среди различных полупроводниковых материалов, используемых для создания «гибких» солнечных батарей, одно из ведущих мест занимает протокристаллический гидрогенизированный кремний, структура которого состоит из аморфной кремниевой матрицы, содержащей нанокристаллические включения. В работе представлен обзор имеющихся данных о свойствах пленок гидрогенизированного кремния, условиях получения протокристаллического кремния и параметрах созданных на его основе солнечных элементов на гибких подложках.

Ключевые слова: солнечные элементы, тонкие пленки, аморфный кремний, нанокристаллический кремний, протокристаллический кремний

PACS: 68.55.ag; 72.40.+w; 77.55.df; 88.40.jj

Библиография – 50 ссылок

РЭНСИТ, 2015, 7(1):15-24 DOI: 10.17725/rensit.2015.07.015
ЛИТЕРАТУРА
  • Schubert MB, Merz R. Flexible solar cells and modules. Phil. Mag., 2009, 89:2623-2644.
  • Schubert MB, Werner JH. Flexible solar cells for clothin. Materials Today, 2006, 9:42-50.
  • Tanner D, Mei F, Le M, Su J, Luu C, Lu W, Frei M, Prabhu G, Chae YK, Eberspacher C. Fabrication and performance of large area thin film solar modules. Proc. of the 23rd European Photovoltaic Solar Energy Conference. D. Lincot, H. Ossenbrink and P. Helm eds., WIP-Renewable Energies, Munich, 2008, p. 2489-2491.
  • Vetter M, Mata C, Andreu J. Lessons learned in production optimization of 2.60m×2.20m a-Si:H photovoltaic modules. Proc. of the 23rd European Photovoltaic Solar Energy Conference. D. Lincot, H. Ossenbrink and P. Helm eds., WIP-Renewable Energies, Munich, 2008, p. 2075-2078.
  • Guha S, Yang J. Thin film silicon photovoltaic - from R&D to commercialization. Technical Digest of the 15th International Photovoltaic Scientific Engineering Conference PVSEC-15. Y. Quinhao ed., Shanghai Scientific & Technical, Shanghai, 2005, p. 35-38.
  • Tanda M, Tabuchi K, Uno M, Kato S, Takeda Y, Iwasaki S, Yokoyama Y, Wada T, Shimosawa M, Sakakibara Y, Takano A, Nishihara H, Enomoto H, Kamoshita T. Large-area, light-weight, flexible solar cell production technology — ready for market entry. Conference Record of the 31st IEEE Photovoltaic Specialists Conference. IEEE, New York, 2005, p. 1560-1563.
  • Jongerden GJ. Monolithically series integrated flexible PV modules manufactured on commodity polymer substrates. Proc. of the 3rd World Conference on Photovoltaic Energy Conversion. Osaka, 2003, IEEE, p. 2109-2111.
  • Ballif C, Terrazzoni-Daudrix V, Haug F-J, Fischer D, Soppe W, Loffler J, Andreu J, Fahland M, Schlemm H, Topic M, Wurz M. Flexcellence: towards roll to roll mass production of low cost thin film silicon solar cells. Proc. of the 22nd European Photovoltaic Solar Energy Conference. G. Willeke, H. Ossenbrink and P. Helm eds., WIP Renewable Energies, Munich, 2007, p. 1835-1839.
  • Werner JH, Wagner TA, Gemmer C, Berge C, Brendle W, Schubert MB. Recent progress on transfer-Si solar cells at ipe Stuttgart. Proc. of the 3rd World Conference on Photovoltaic Energy Conversion. Osaka, 2003, IEEE, p. 1272-1275.
  • Schubert MB, Ishikawa Y, Kramer JW, Gemmer CEM, Werner JH. Clothing Integrated photovoltaics. Conference Record of the 31st IEEE Photovoltaic Specialists Conference, IEEE, New York, 2005, p. 1488-1451.
  • Izu M, Ovshinsky SR. Roll-to-roll plasma deposition machine for the production of tandem amorphous silicon alloy solar cells. Thin Solid Films, 1984, 119:55-60.
  • Yang J, Banerjee A, Guha S. Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies. Appl. Phys. Lett., 1997, 70:2975-2977.
  • Jeffrey FR, Vernstrom GD, Aspen FE, Jacobson RL. Fabrication of amorphous silicon devices on plastic substrates. Mater. Res. Soc. Symp. Proc., 1985, 49:41-43.
  • Yano M, Suzuki K, Nakatani K, Okaniwa H. Roll-to-roll preparation of a hydrogenated amorphous silicon solar cell on a polymer film substrate. Thin Solid Films, 1987, 146:75-81.
  • Haug F-J, Soderstrom T, Python M, Terrazzoni-Daudrix V, Niquille X, Ballif C. Development of micromorph tandem solar cells on flexible low-cost plastic substrates. Sol. Energ. Mater. Sol. Cell., 2009, 93:884-887.
  • Gemmer C, Schubert MB. Solar cell performance under different illumination conditions. Mater. Res. Soc. Symp. Proc., 2001, 664:A25.9.1.
  • Contreras MA, Egaas B, Ramanathan K, Hiltner J, Swartzlander A, Hasoon F, Noufi R. Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells. Prog. Photovoltaic Res. Appl., 1999, 7:311-316.
  • Kessler F, Herrman D, Powalla M. Approaches to flexible CIGS thin-film solar cells. Thin Solid Films, 2005, 480-481:491-498.
  • Herrmann D, Kessler F, Klemm U, Kniese R, Magorian-Friedlmeier T, Spiering S, Witte W, Powalla M. Flexible, monolithically integrated Cu(In,Ga)Se2 thin-film solar modules. Mater. Res. Soc. Symp. Proc., 2005, 865:F15.1.1.
  • Hartmann M, Schmidt M, Jasenek A, Schock HW, Kessler F, Herz K, Powalla M. Flexible and light weight substrate for Cu(In,Ga)Se2 solar cell and modules. Conference Record of the 28th IEEE Photovoltaic Specialists Conference, IEEE, New York, 2000, p. 638-639.
  • Tiwari AN, Romeo A, Baetzner D, Zogg H. Flexible CdTe solar cells on polymer films. Prog. Photovoltaic Res. Appl., 2001, 9:211-215.
  • Dennler G, Forberich K, Ameri T, Waldauf C, Denk P, Brabec CJ, Hingerl K, Heeger AJ. Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence. J. Appl. Phys., 2007, 102:123109-1 – 123109-6.
  • Brabec CJ. Organic photovoltaics: technology and market. Sol. Energ. Mater. Sol. Cell., 2004, 83:273-292.
  • Lagref JJ, Nazeeruddin MK, Graetzel M. Molecular engineering on semiconductor surfaces: design, synthesis and application of new efficient amphiphilic ruthenium photosensitizers for nanocrystalline TiO2 solar cells. Synth. Met., 2003, 138:333-339.
  • Chwang AB, Rothman MA, Mao SY, Hewitt RH, Weaver MS, Silvernail JA, Rajan K, Hack M, Brown JJ, Chu X, Moro L, Krajewski T, Rutherford N. Thin film encapsulated flexible organic electroluminescent displays. Appl. Phys. Lett., 2003, 83:413-415.
  • Hanak JJ. Monolithic solar cell panel of amorphous silicon. Sol. Energ., 1979, 23:145-147.
  • Merz R, Adachi MM, Werner JH, Schubert MB.in-Situ series connection for thin film photovoltaic modules. Proc. of the 23rd European Photovoltaic Solar Energy Conference. D. Lincot, H. Ossenbrink and P. Helm eds., WIP Renewable Energies, Munich, 2008, p. 2411-2413.
  • Merz R. Method for producing series-connected solar cells and apparatus for carrying out the method. US patent application 2009/0017193 (2009).
  • Ishikawa Y, Schubert MB. Flexible protocrystalline silicon solar cells with amorphous buffer layer. Jpn. J. Appl. Phys., 2006, 45:6812-6822.
  • Koh J, Lee Y, Fujiwara H, Wronski CR, Collins RW. Optimization of hydrogenated amorphous silicon p–i–n solar cells with two-step i layers guided by real-time spectroscopic ellipsometry. Appl. Phys. Lett., 1998, 73:1526-1528.
  • Koch C, Ito M, Schubert MB. Low-temperature deposition of amorphous silicon solar cells. Sol. Energ. Mater. Sol. Cell., 2001, 68:227-236.
  • Guha S, Yang J, Banerjee A, Yan B, Lord K. High quality amorphous silicon materials and cells grown with hydrogen dilution. Sol. Energ. Mater. Sol. Cell., 2003, 78:329-347.
  • Williamson DL. Nanostructure of a-Si:H and related materials by small-angle X-ray scattering. Mater. Res. Soc. Symp. Proc., 1995, 377:251-254.
  • Luysberg M, Hapke P, Carius R, Finger F. Structure and growth of µc-Si:H: Investigation by TEM and Raman spectroscopy on samples prepared at different plasma excitation frequencies. Phil. Mag., 1997, A75:31-37.
  • Houben L, Luysberg M, Hapke P, Carius R, Finger F, Wagner H. Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth. Phil. Mag., 1998, A77:1447-1452.
  • Koch C, Ito M, Schubert MB, Werner JH. Low-temperature deposition of amorphous silicon based solar cells. Mater. Res. Soc. Symp. Proc., 1999, 557:749-754.
  • Losurdo M, Giangregorio M, Grimaldi A, Capezzuto P, Bruno G. A study of growth mechanism of microcrystalline thin silicon films deposited at low temperature by SiF4-H2-He PECVD. Eur. Phys. J.Appl. Phys., 2004, 26:187-192.
  • Fejfar A, Mates T, Koch C, Rezek B, Svrcek V, Fojtık P, Stuchlıґkova H, Stuchlık J, Kocka J. Microscopic aspects of charge transport in hydrogenated microcrystalline silicon. Mater. Res. Soc. Symp. Proc., 2001, 664:A16.1.
  • Meier J, Vallat-Sauvain E, Dubail S, Kroll U, Dubail J, Golay S, Feitknecht L, Torres P, Fay S, Fischer D, Shah A. Microcrystalline/micronorth silicon thin-film solar cells prepared be VHF-GD technique. Sol. Energ. Mater. Sol. Cell., 2001, 66:73-84.
  • Shah AV, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll U, Droz C, Graf U. Material and solar cell research in microcrystalline silicon. Sol. Energ. Mater. Sol. Cell., 2003, 78:469-491.
  • Schropp REI, Rath JK, Li H. Growth mechanism of nanocrystalline silicon at the phase transition and its application in thin film solar cells. J. Cryst. Growth, 2009, 311:760-764.
  • Hamma S, Roca i Cabarroca P. Low-temperature growth of thick intrinsic and ultrathin phosphorous or boron-doped microcrystalline silicon films: Optimum crystalline fractions for solar cell applications. Sol. Energ. Mater. Sol. Cell., 2001, 69:217-239.
  • Alpuim P, Chu V, Conde JP. Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition. J. Appl. Phys., 1999, 86:3812-3821.
  • Ito M, Koch C, Svrcek V, Schubert MB, Werner JH. Silicon thin film solar cells deposited under 80°C. Thin Solid Films, 2001, 383:129-131.
  • Staebler DL, Wronski CR. Reversible conductivity changes in discharge produced amorphous Si. Appl. Phys. Lett., 1977, 31:292-294.
  • Koch C, Ito M, Svrecek V, Schubert MB, Werner JH. Protocrystalline growth of silicon below 80°C. Mater. Res. Soc. Symp. Proc., 2000, 609:A15.6.
  • Spear WE, LeComber PG. Substitutional doping of amorphous silicon. Solid State Comm., 1975, 17:1193-1196.
  • Alpuim P, Chu V, Conde JP. Electronic and structural properties of doped amorphous and nanocrystalline silicon deposited at low substrate temperatures by radio-frequency plasma-enhanced chemical vapor deposition. J. Vac. Sci. Tech., 2003, A21:1048-1054.
  • Ishikawa Y, Schubert MB. Protocrystalline silicon cells deposited at 110°C in nip and pin sequence. Proc. of the 20th European Photovoltaic Solar Energy Conference. W. Palz, H. Ossenbrink and P. Helm eds., WIP-Renewable Energies, Munich, 2005, p. 1525-1528.
  • Koh J, Ferlauto AS, Rovira PI, Wronski CR, Collins RW. Evolutionary phase diagrams for plasma-enhanced chemical vapor deposition of silicon thin films from hydrogen-diluted silane. Appl. Phys. Lett., 1999, 75:2286-2288.


Полнотекстовая электронная версия статьи – на вебсайтах http://elibrary.ru и http://rensit.ru/vypuski/article/187/7(1)-15-24.pdf